首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Residues of flubendiamide and desiodo flubendiamide were studied following three applications of flubendiamide 480 SC at 7 days interval at 90 and 180 g a.i. ha(-1) in/on brinjal fruits. An average initial deposit of 0.33 and 0.61 mg kg(-1) of flubendiamide was observed respectively after application at single and double dosages. The residues of flubendiamide dissipated quickly at both the dosages, and after 3 days, the extent of dissipation was found to be about 76% and 79% at the single and double dosages, respectively. Brinjal fruit samples analysed at different time intervals did not show the presence of desiodo flubendiamide. The half-life of flubendiamide was observed to be 0.62 and 0.54 days at single and double dosages, respectively. The limit of determination of flubendiamide and desiodo flubendiamide was observed to be 0.05 mg kg(-1). Soil samples analysed after 15 days of the last application did not reveal the presence of flubendiamide and desiodo flubendiamide at their determination limit of 0.05 mg kg(-1). An assessment of the total intake of flubendiamide resulting through the consumption of brinjal fruits and its comparison with acceptable daily intake seems to be quite safe from consumer point of view.  相似文献   

2.
Dissipation and decontamination of chlorantraniliprole (Coragen 18.5 SC) in brinjal and okra fruits were studied following field application at single and double doses of 30 and 60 g ai ha?1, and the residues of the insecticide was estimated using LC-MS/MS. Initial residues of chlorantraniliprole at single and double doses on the fruits of brinjal were 0.72 and 1.48 mg kg?1, while on okra fruits, the residues were 0.48 and 0.91 mg kg?1, respectively. The residues reached below detectable level of 0.01 mg kg?1 on the 10th day. Half-life of chlorantraniliprole at 30 and 60 g ai ha?1 on brinjal was 1.58 and 1.80 days with the calculated waiting period of 0.69 and 2.38 days, whereas on okra, the values were 1.60 and 1.70 and 0 and 1.20 days, respectively. The extent of removal of chlorantraniliprole using simple decontaminating techniques at 2 h and 3 days after spraying was 40.99–91.37 % and 29.85–89.12 %, respectively, from brinjal fruits and 47.78–86.10 % and 41.77–86.48 %, respectively, from okra fruits.  相似文献   

3.
Supervised field trials following good agricultural practices were conducted at the research farms of four agricultural universities located at four different agroclimatic zones of India to evaluate the persistence and dissipation of flubendiamide and its metabolite, des-iodo flubendiamide, on cabbage. Two spray applications of flubendiamide 480 SC of standard and double dose at the rate of 24 and 48 g a.i. ha?1 were given to the crop at a 15-day interval, and the residues of flubendiamide 2 h after spray were found in the range of 0.107–0.33 and 0.20–0.49 mg kg?1 at respective doses. Residue of des-iodo flubendiamide was not detected in any cabbage sample during study period. No residues were found in the soil samples collected from all treated fields after 15 days of application. On the basis of data generated under All India Network Project on Pesticide Residues, a preharvest interval (PHI) of 10 days has been recommended, and the flubendiamide 480 SC has been registered for its use on cabbage by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of flubendiamide on cabbage has been fixed by the Ministry of Health and Family Welfare, Government of India, under Food Safety Standard Authority of India as 0.05 μg/g after its risk assessment.  相似文献   

4.
Residues of fubendiamide and its metabolite desiodo flubendiamide were estimated in cabbage and soil using high-performance liquid chromatography with UV–vis detector. The initial deposits of flubendiamide residues on cabbage were found to be 0.16 and 0.31 μg g?1 following two applications of flubendiamide 20 WG at 12.5 (standard dose) and 25 (double dose) g a.i. ha?1 respectively at 10-days interval. The half-life values (t 1/2) of flubendiamide on cabbage ranged from 3.4 to 3.6 days. When flubendiamide applied at both the standard and double dose, no detectable residues were found in cabbage and soil at harvest. Thus, a waiting period of 1.63 days was suggested for the safe consumption of flubendiamide-treated cabbage. These data could provide guidance for the proper and safe use of this pesticide on cabbage crops in India.  相似文献   

5.
Persistence of dicofol residues in cotton lint seed, and soil   总被引:1,自引:0,他引:1  
A supervised field trial was conducted at the CCS Haryana Agricultural University, Hisar to assess the residues of dicofol on cotton, during Kharif season, 2008. Dicofol (Kelthane 18.5EC) was applied at 500 g a.i./ha (T(1)) and 1,000 g a.i./ha T(2)) after 105 days of sowing of cotton crop (Varity Cotton/H-1226). Soil samples were collected on 0 (1 h after treatment), 3, 7, 10, 15, 30, and 60 days after spray and cotton samples were collected at harvest. Samples were processed and residues were quantified by GC-ECD system equipped with capillary column. Limit of detection and limit of quantification (LOQ) were 0.001 and 0.010 mg kg(?-1), respectively, for soil and LOQ for cotton lint and seed was 0.020 mg kg(?-1). Initial residues of 0.588 and 1.182 mg kg(?-1) in soil reached below detectable level (BDL) of 0.010 mg kg(?-1) in T(1) and to the level of BDL (0.010 mg kg(?-1)) in T(2) at harvest (60 days after treatment). In 60 days, residues dissipated almost completely (100 and >99%) in both the treatments. Half-life period was calculated as 8.57 days at single dose and 8.69 days at double dose in soil. Residues of dicofol were detected in cotton lint to the levels of 0.292 and 0.653 mg kg(?-1) and in seed 0.051 and 0.090 mg kg(?-1) in T(1) and T(2) doses, respectively at harvest. Residues in cotton seed were below MRL value of 0.01 mg kg(?-1) in both the doses.  相似文献   

6.
Supervised field trials were conducted at the research farms of four agricultural universities located at different agro-climatic zones of India to find out the harvest time residues of flubendiamide and its des-iodo metabolite on pigeon pea (Cajanus cajan) during the year 2006-2007. Two spray applications of flubendiamide 20 WDG at 50 g (T(1)) and 100 g (T(2)) a.i./ha were given to the crop at 15-days interval. The foliage samples at different time intervals were drawn at only one location, however, the harvest time samples of pigeon pea grain, shell, and straw were drawn at all the four locations. The residues were estimated by HPLC coupled with UV-VIS variable detector. No residues of flubendiamide and its des-iodo metabolite were found at harvest of the crop at or above the LOQ level of 0.05 μg/g. On the basis of the data generated, a pre-harvest interval (PHI) of 28 days has been recommended and the flubendiamide 20 WDG has been registered for use on pigeon pea by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India and the MRL has been fixed by Ministry of Health and Family Welfare, Government of India under Prevention of Food and Adulteration as 0.05 μg/g on pigeon pea grains.  相似文献   

7.
A supervised open field trial was conducted to evaluate the dissipation pattern and risk assessment of flubendiamide in gherkin fruits following foliar application of Fame 480 SC at 60 and 120 g a.i.?ha?1. Samples of gherkin fruits were drawn at different time intervals and quantified by HPLC-DAD. The maximum initial deposits of flubendiamide on gherkin were found to be 0.79 and 1.52 mg kg?1, respectively, at recommended and double the recommended doses. The dissipation pattern of flubendiamide followed a first-order kinetics with half-lives of 1.87 to 2.16 days at 60 and 120 g a.i.?ha?1, respectively. The limit of quantification of flubendiamide and desiodo flubendiamide was observed to be 0.01 mg kg?1 for gherkin fruit and soil substrates. Theoretical maximum residue contribution (TMRC) for flubendiamide was calculated and found to be well below the maximum permissible intake (MPI) on gherkin fruits. Thus, the application of flubendiamide at the recommended dose on gherkin fruits presents no human health risks and safe to consumers.  相似文献   

8.
Thiacloprid, a neonicotinoid insecticide with novel mode of action, is found to be effective against several lepidopteran as well as hemipteran pests. The present studies were carried out to observe the persistence pattern of thiacloprid on brinjal and to suggest suitable waiting period for the safety of consumers. Persistence of thiacloprid in brinjal was studied following three applications of thiacloprid (Alanto 240 SC) at 180 and 360 g a.i. ha?1 at 7 days interval. Residues of thiacloprid in brinjal were estimated by high-performance liquid chromatography and were confirmed by liquid chromatography–mass spectrometry. The average initial deposits of thiacloprid were observed to be 0.48 and 1.05 mg?kg?1 on the brinjal fruit following third application of thiacloprid at recommended and double the recommended dosages, respectively. Half-life periods for thiacloprid were found to be 0.47 and 0.50 days at single and double the application rates, respectively. Residues of thiacloprid declined below its limit of quantification of 0.05 mg?kg?1 after 3 and 5 days, respectively, at recommended and double the recommended application rates. Therefore, the use of thiacloprid does not seem to pose any risk hazard and a waiting period of 1 day is suggested for safe consumption of brinjal fruits.  相似文献   

9.
A single laboratory UPLC-MS/MS method was developed and validated for the estimation of fipronil and its metabolites in fresh and dry chilli pepper fruits. Dissipation of fipronil on chilli fruits was studied following the application of fipronil (Jump 80 WG) at 40 and 80 g active ingredient (a.i.) ha?1 in the fruiting stage of the crop. The initial deposits of total fipronil on fresh chilli fruits at single and double dose application were 0.69 and 1.43 μg g?1, respectively, and were dissipated to below quantitation level at 27 days after application. The half-life of fipronil at single and double dose in fresh chilli pepper was 4.22 and 4.32 days and the waiting period was 25.9 and 30.6 days, respectively. Processing factor due to sun drying was calculated by measuring fipronil residues in dry chilli fruits, and it ranged from 2.96 to 3.50 during 0 to 21st day after application. Among the metabolites of fipronil, fipronil desulfenyl and fipronil sulfone had maximum residues in fresh and dried chilli, respectively, followed by fipronil sulfide. Dipping in solutions of tamarind, turmeric, vinegar and slaked lime and wet scrubbing could remove more than 90 % of fipronil residues in fruits.  相似文献   

10.
Samples of okra and brinjal fruits, collected from non-integrated pest management (Non-IPM) and IPM fields in village Raispur, Ghaziabad District (U.P.), were analyzed for pesticide residues. The residues of chlorpyrifos in soil were 4.219 and 1.135 microg/g at harvest time in non-IPM and IPM fields of summer okra crop from initial value of 0.407 microg/g before sowing, while in brinjal crop, it was not detected in soils of any trials. During first year of study, the residues of chlorpyrifos and cypermethrin in okra fruit were observed to be 5.75 and 0.625 microg/g, respectively, for non-IPM fields; and 0.104 microg/g of chlorpyrifos for IPM trials. The pesticide residues were found to be 0.77, 1.39, 0.4 and 0.32 microg/g for cypermethrin, chlorpyrifos, monocrotophos and dimethoate, respectively, for non-IPM okra fruits in second year. For brinjal fruit, residues of cypermethrin and imidacloprid were not detected in IPM trials while it was found to be 0.28 and 0.78 microg/g for cypermethrin and chlorpyrifos respectively, for non-IPM trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号