首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 484 毫秒
1.
The fertigation effect of distillery effluents concentrations such as 5%, 10%, 25%, 50%, 75% and 100% were studied on Trigonella foenu-graecu (Pusa early bunching) along with control (bore well water). On irrigation of soil with different effluents up to 90 days of harvesting, it was observed that there was a significant effect on moisture content (P < 0.001), EC, pH, Cl − , total organic carbon (TOC), HCO3-_{3}^{-}, CO3-2_{3}^{-2}, Na + , K + , Ca2 + , Mg2 + , Fe2 + , TKN, NO32-_{3}^{2-}, PO43-_{4}^{3-}, and SO42-_{4}^{2-} (P < 0.0001) and insignificant effect on WHC and bulk density (P > 0.05).There was no significant change in the soil texture of the soil. Among various concentrations of effluent irrigation, the irrigation with 100% effluent concentration decreased pH (16.66%) and increased moisture content (30.82%), EC(84.13%), Cl −  (292.37%), TOC (4311.61%), HCO3-_{3}^{-} (27.76%), CO3-2_{3}^{-2} (32.63%), Na +  (273%), K +  (31.59%), Ca2 +  (729.76%), Mg2 +  (740.47%), TKN (1723.32%), NO32-_{3}^{2-} (98.02%), PO43-_{4}^{3-} (337.79%), and SO42-_{4}^{2-} (77.78%), Fe2 +  (359.91%), Zn (980.48%), Cu (451.51%), Cd (3033.33%), Pb (2350.00%), and Cr (2375.00%) in the soil. The agronomical parameters such as shoot length, root length, number of leaves, flowers, pods, dry weight, chlorophyll content, LAI, crop yield, and HI of T. foenum-graecum were recorded to be in increasing order at low concentration of the effluent, i.e., from 5% to 50% and in decreasing order at higher effluent concentration, i.e., from 75% to 100% as compared to control. The enrichment factor of various heavy metals was ordered for soil Cd>Cr> Pb>Zn>Cu>Fe and for T. foenum-graecum plants Pb>Cr>Cd>Cu>Zn>Fe after irrigation with distillery effluent.  相似文献   

2.
When agricultural lands are no longer used for agriculture and allowed to recover its natural vegetation, soil organic carbon can accumulate in the soil. Measurements of soil organic carbon and aggregate stability changes under various forms of land use are needed for the development of sustainable systems. Therefore, comparison of soil samples taken from both agricultural and nearby area close to land-mined fields where no agricultural practices have been done since 1956 can be a good approach to evaluate the effects of tillage and agriculture on soil quality. The objective of this study was to compare tillage, cropping and no tillage effects on some soil-quality parameters. Four different locations along the Turkey–Syria border were selected to determine effects of tillage and cropping on soil quality. Each location was evaluated separately because of different soil type and treatments. Comparisons were made between non-tilled and non-cropped fallow since 1956 and adjacent restricted lands that were tilled about every 2 years but not planted (T) or adjacent lands tilled and planted with wheat and lentil (P). Three samples were taken from the depths of 0–20 and 20–40 cm each site. Soil organic carbon (SOC), pH ,electrical conductivity, water soluble Ca++, Mg++, CO3-2{\rm CO}_{3}^{-2} and HCO3-{\rm HCO}_{3}^{-}, extractable potassium (K+) and sodium (Na+), soil texture, ammonium (NH4+{\rm NH}_{4}^{+}–N) and nitrate (NO3–N), extractable phosphorous and soil aggregate stability were determined. While the SOC contents of continuous tillage without cropping and continuous tillage and cropping were 2.2 and 11.6 g kg−1, respectively, it was 30 g kg−1 in non-tilled and non-planted site. Tillage of soil without the input of any plant material resulted in loss of carbon from the soil in all sites. Soil extractable NO3−N contents of non-tilled and non-cropped sites were greatest among all treatments. Agricultural practices increased phosphorus and potassium contents in the soil profile. P2O5 contents of planted soils were approximately 20 to 39 times greater than those of non-tilled and non-cropped soils at different sites. FTIR spectra showed that never tilled sites had greater phenol, carboxylic acid, amide, aromatic compounds, polysaccharide and carbohydrates than other treatments.  相似文献   

3.
The Thirumanimuttar sub-basin forms an important groundwater province in south India, facing serious deficiency in both quality and quantity of groundwater due to increased demand associated with rapid population explosion, agricultural growth and industrial activities. A total of 194 groundwater samples were collected and 15 water quality parameters were analyzed using standard procedures. Na + , Cl − , Ca2 + , HCO3-_{3}^{-}, Mg2 +  and SO42-_{4}^{2-} concentration ions are more dominant in both seasons. The total dissolved solids and electrical conductivity was observed good correlation with Na + , Cl − , HCO3-_{3}^{-}, Ca2 + , Mg2 + , Cl − , PO43-_{4}^{3-} and NO3- _{3}^{- } ions indicating dominance of plagioclase feldspar weathering, anthropogenic input and over drafting of groundwater irrespective of seasons. The Hill–Piper diagram indicates alkaline earths exceed the alkalis, an increase of weak acids was noted during both the seasons. For assessing the groundwater for irrigation suitability parameters like total hardness, sodium adsorption ratio, residual sodium carbonate (RSC), permeability index, and sodium percentage are also calculated. Permanent hardness was noted in higher during both the seasons due to discharge of untreated effluents and ion exchange process. The RSC indicates 56% of the samples are not suitable for irrigation purposes in both seasons, if continuously used will affect the crop yield. From the results, nearly 72% of the samples are not suitable for irrigation.  相似文献   

4.
Nagpur City located in semiarid area of central India is a fast-growing industrial centre. In recent years, rapid development has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The present study was undertaken to assess major ion chemistry of shallow groundwater to understand geochemical evolution of groundwater and water quality for promoting sustainable development and effective management of groundwater resources. A total of 47 water samples were collected from shallow aquifer of selected parts of the city and the water chemistry of various ions viz. Ca2 + , Mg2 + , Na + , K + , CO3  2-_{3}^{\ \, 2-}, HCO3  -_{3}^{\ \, -}, Cl − , SO4  2-_{4}^{\ \,2-} and NO3  -_{3}^{\ \,-} are carried out. The chemical relationships in Piper diagram identify Ca–HCO3–Cl and mixed Ca–Na–HCO3–Cl as most prevalent water types. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Ionic ratios and Gibb’s diagram suggest that silicate rock weathering and anthropogenic activities are the main processes that determine the ionic composition in the study area. The nitrate appeared as a major problem of safe drinking water in this region. We recorded highest nitrate concentration, i.e., 411 mg/l in one of the dug well. A comparison of groundwater quality in relation to drinking water quality standards revealed that about half of the shallow aquifer samples are not suitable for drinking.  相似文献   

5.
The information on bacterial community composition (BCC) in Portuguese water bodies is very scarce. Cértima River (central western Portugal) is known to have high levels of pollution, namely organic. In the present work, the BCC from a set of 16 water samples collected from Cértima River Basin and its main tributaries was characterized using 16S rDNA–denaturing gradient gel electrophoresis, a culture-independent molecular approach. Molecular data were related to environmental parameters through multivariate analysis to investigate potential impact of water pollution along the river. Principal component analysis using environmental data showed a water quality gradient from more pristine waters (at the mountain tributaries) to waters with increasingly eutrophic potential (such as Fermentelos Lake). This gradient was mainly defined by factors such as organic and inorganic nutrient sources, electrical conductivity, hydrogen carbonate concentration, and pH. Molecular results showed variations in BCC along Cértima River Basin but in the main river section, a Bacteroidetes phylotype (Flavobacterium sp.) proved to be dominant throughout the river course. Multivariate analysis suggests that spatial variation of BCC along the Cértima River Basin depended mainly on parameters such as Chl a, total suspended solid (TSS), total organic carbon, electrical conductivity, and HCO _boxclose^-_{3}^{-} levels. Bacteroidetes phylotypes were all related to higher electrical conductivity and HCO3-_{3}^{-} levels although some of these were also correlated with high SO42-_{4}^{2-} and others with high soluble reactive phosphorus, nitrate, TN, and Kjeld-N levels. The Gammaproteobacteria occurrence was correlated with high SO42-_{4}^{2-} levels. One of the Betaproteobacteria phylotypes showed to correlate with low redox potential (Eh) and high temperature, pH, TSS, and Chl a levels while another one showed a negative correlation with Chl a values.  相似文献   

6.
This study was performed to characterize hydrochemical properties of springs based on their geological origins in Taiwan. Stepwise discriminant analysis (DA) was used to establish a linear classification model of springs using hydrochemical parameters. Two hydrochemical datasets—ion concentrations and relative proportions of equivalents per liter of major ions—were included to perform prediction of the geological origins of springs. Analyzed results reveal that DA using relative proportions of equivalents per liter of major ions yields a 95.6% right assignation, which is superior to DA using ion concentrations. This result indicates that relative proportions of equivalents of major hydrochemical parameters in spring water are more highly associated with the geological origins than ion concentrations do. Low percentages of Na +  equivalents are common properties of springs emerging from acid-sulfate and neutral-sulfate igneous rock. Springs emerging from metamorphic rock show low percentages of Cl −  equivalents and high percentages of HCO3-_{3}^{-} equivalents, and springs emerging from sedimentary rock exhibit high Cl − /SO42-_{4}^{2-} ratios.  相似文献   

7.
We present a seasonal and baseline survey of selected physicochemical parameters in epipelagic samples from Qua Iboe (QIB) and Cross River (CRV) estuaries in Niger Delta region of Nigeria. The parameters analysed were temperature, pH, salinity, turbidity, total suspended solids (TSS), dissolved oxygen (DO), biochemical oxygen demand (BOD), total organic carbon (TOC), total nitrogen, available phosphorus, Ca2?+?, Mg2?+?, Na?+?, K?+? (exchangeable cations) and ${\rm SO}_{4}^{2-}$ , Cl???, ${\rm NH}_{4}^{+}$ and ${\rm NO}_{3}^{-}$ . The results showed that the physicochemical parameters exhibited spatiotemporally explicit variabilities. The mean levels of the parameters were higher during the wet season (June–September) except salinity, DO, Cl??? and ${\rm NH}_{4}^{+}$ in CRV, whilst QIB recorded higher mean levels for temperature, pH, salinity, BOD, TOC, ${\rm SO}_{4}^{2-}$ , Cl??? and ${\rm NH}_{4}^{+}$ during the dry season (November–February). Significant seasonal variability was recorded for salinity, DO, turbidity, TSS, ${\rm SO}_{4}^{2-}$ and ${\rm NH}_{4}^{+}$ levels in CRV and for turbidity, DO, BOD, TSS, TOC, available P, Na, Cl??? and ${\rm NO}_{3}^{-}$ levels in QIB. This study confirmed that the degree of variability of the various physicochemical surface water quality indicators is dependent on the prevalent environmental estuarine factors.  相似文献   

8.
Mean annual concentration of ${\textrm{SO}}_{4}^{2-}$ in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO2. Emissions of NOx have not changed substantially, but deposition has declined slightly at BBWM. Base cations, ${\textrm{NH}}_{4}^{+}$ , and Cl??? concentrations were largely unchanged, with small irregular changes of <1 μeq L???1 per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June–October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November–May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled ${\textrm{NO}}_{3}^{-}$ and K?+?. They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than ${\textrm{SO}}_{4}^{2-}$ , with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH4)2SO4 enhanced acidification of West Bear Brook’s (WB) watershed. Despite the manipulation, ${\textrm{NH}}_{4}^{+}$ concentration remained below detection limits at WB, while leaching of ${\textrm{NO}}_{3}^{-}$ increased. The seasonal pattern for ${\textrm{NO}}_{3}^{-}$ concentrations in WB, however, remained similar to EB. Mean monthly concentrations of ${\textrm{SO}}_{4}^{2-}$ have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca2?+?, Mg2?+?, and K?+? due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.  相似文献   

9.
The main purpose of this paper was to carry out a source apportionment of suspended particulate matter (SPM) samples using positive matrix factorization procedure. The central and local Government of Japan introduced strict emission regulations in 2002/10 and 2003/10, respectively, in curbing SPM pollution from major metropolitans. This paper also highlighted the impact of the measures taken by the central and local Government of Japan on the reduction of SPM and the contributions of sources. SPM samples were collected for 6 years starting from 1999 to 2005 at two sites, i.e., site A (urban) and site B (suburban) of Yokohama, Japan. Microwave digestion and inductively coupled plasma-mass spectroscopy (ICP-MS) were employed to measure Mg, Al, Ca, V, Cr, Mn, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and Bi, while water soluble ions (Na + , NH4  +_{4}^{\ \,+}, K + , Ca2 + , Mg2 + , Cl − , NO3  -_{3}^{\ \,-} and SO4  2-)_{4}^{\ \,2-}) as well as carbonaceous mass (EC and OC) were analyzed using ion chromatograph and CHN analyzer, respectively. The sources identified at two sites were automobile, soil dust, marine aerosol, mixed sources, and secondarily formed aerosol. Also, source quantification was performed. Automobile and soil dust were striking contributors at site A. Automobile and soil dust of SPM aerosol might be produced from local origin at current study areas. Besides, Asian dust had an impact on high concentrations of SPM aerosol in some certain period of the year due to the outflows of East Asian emission. In contrast, secondary aerosol in the form of sulfate and ammonium as well as mixed sources (coal, long-transported Cs, and other unknown sources) were remarkable at site B. Stationary/industrial combustion has apparently more impact on the release of SPM components at site B than A. Automobile regulations in 2002 and 2003, respectively, resulted in reduction of SPM by 28% for site A and 16% for site B. There was also net reduction of automobile contribution at both sites due to the above measures being implemented.  相似文献   

10.
The southwestern coast of India is drained by many small rivers with lengths less than 250 km and catchment areas less than 6,500 km2. These rivers are perennial and are also the major drinking water sources in the region. But, the fast pace of urbanization, industrialization, fertilizer intensive agricultural activities and rise in pilgrim tourism in the past four to five decades have imposed marked changes in water quality and solute fluxes of many of these rivers. The problems have aggravated further due to leaching of ionic constituents from the organic-rich (peaty) impervious sub-surface layers that are exposed due to channel incision resulting from indiscriminate instream mining for construction-grade sand and gravel. In this context, an attempt has been made here to evaluate the water quality and the net nutrient flux of one of the important rivers in the southwestern coast of India, the Manimala river which has a length of about 90 km and catchment area of 847 km2. The river exhibits seasonal variation in most of the water quality parameters (pH, electrical conductivity, dissolved oxygen, total dissolved solids, Ca, Mg, Na, K, Fe, HCO3, NO2-N, NO3-N, P \text-inorg_{\rm \text{-}inorg}, P \text-tot_{\rm \text{-}tot}, chloride, SO4, and SiO2). Except for NO3-N and SiO2, all the other parameters are generally enriched in non-monsoon (December–May) samples than that of monsoon (June–November). The flux estimation reveals that the Manimala river transports an amount of 2,308 t y − 1 of dissolved inorganic nitrogen, 87 t y − 1 dissolved inorganic phosphorus, and 9246 t y − 1 of SO4, and 1984 t y − 1 K into the receiving coastal waters. These together constitute about 23% of the total dissolved fluxes transported by the Manimala river. Based on the study, a set of mitigation measures are also suggested to improve the overall water quality of small catchment rivers of the densely populated tropics in general and the south western coast in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号