首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sampling program was conducted to investigate the formation of disinfection by-products (DBPs) and dissolved organic carbon (DOC) at two advanced water treatment plants in Kaohsiung City, Taiwan. The results in this study can be used as a reference for the operational control of water treatment plants and the setting of regulations in Taiwan. Samples of drinking water were collected from two advanced water treatment plants from June 2007 to April 2008. Changes in the concentration of dissolved organic carbon, the trihalomethane formation potential, and the haloacetic acids formation potential were measured in raw water samples. Variations in the concentrations of trihalomethanes (THMs) and haloacetic acids (HAA5) in finished drinking water were evaluated. The major species of HAA5 were in the order of dichloroacetic acid and trichloroacetic acid and the THM was of trichloromethane. DOC was strongly related to DBPs in raw water. In this investigation, the removal efficiency of DBPs in Plant A (ultrafiltration/reverse osmosis system) exceeded that in Plant B (ozonation/biological activated carbon system). Both advanced water treatment plants greatly improved the quality of drinking water.  相似文献   

2.
Accurate determinations of total (TOC), dissolved (DOC) and particulate (POC) organic carbon concentrations are critical for understanding the geochemical, environmental, and ecological roles of aquatic organic matter. Of particular significance for the drinking water industry, TOC measurements are the basis for compliance with US EPA regulations. The results of an interlaboratory comparison designed to identify problems associated with the determination of organic matter concentrations in drinking water supplies are presented. The study involved 31 laboratories and a variety of commercially available analytical instruments. All participating laboratories performed well on samples of potassium hydrogen phthalate (KHP), a compound commonly used as a standard in carbon analysis. However, problems associated with the oxidation of difficult to oxidize compounds, such as dodecylbenzene sulfonic acid and caffeine, were noted. Humic substances posed fewer problems for analysts. Particulate organic matter (POM) in the form of polystyrene beads, freeze-dried bacteria and pulverized leaf material were the most difficult for all analysts, with a wide range of performances reported. The POM results indicate that the methods surveyed in this study are inappropriate for the accurate determination of POC and TOC concentration. Finally, several analysts had difficulty in efficiently separating inorganic carbon from KHP solutions, thereby biasing DOC results.  相似文献   

3.
For some utilities, new US drinking water regulations may require the removal of disinfection byproduct (DBP) precursor material as a means of minimizing DBP formation. The Environmental Protection Agency's Stage 1 DBP Rule relies on total organic carbon (TOC) concentrations as a measure of the effectiveness of treatment techniques for removing organic material that could act as DBP precursors. Accordingly, precise and accurate methods are needed for the determination of TOC and dissolved organic carbon (DOC) concentrations in raw and finished potable water supplies. This review describes the current analytical technologies and summarizes the key factors affecting measurement quality. It provides a look into the fundamental principles and workings of TOC analyzers. Current peroxydisulfuric acid wet ashing methods and combustion methods are discussed. Issues affecting quality control, such as non-zero blanks and preservation, are covered. Some of the difficulties in analyzing water for TOC and DOC that were identified up to 20 years ago still remain problematic today. Limitations in technology, reagent purity, operator skill and knowledge of natural organic matter (NOM) can preclude the level of precision and accuracy desirable for compliance monitoring.  相似文献   

4.
Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC, UV254, and AOC) from water, experimental results indicate that the removal rate of AOC at the Cheng Ching Lake water treatment plant (which utilizes advanced water treatment processes, and is hereinafter referred to as CCLWTP) is 54%, while the removal rate of AOC at the Gong Yuan water treatment plant (which uses traditional water treatment processes, and is hereinafter referred to as GYWTP) is 36%. In advanced water treatment units, new coagulation–sedimentation processes, rapid filters, and biological activated carbon filters can effectively remove AOC, total organic carbon (TOC), and dissolved organic carbon (DOC). In traditional water treatment units, coagulation–sedimentation processes are most effective in removing AOC. Simulation results and calculations made using the AutoNet method indicate that TOC, TDS, NH3-N, and NO3-N should be regularly monitored in the CCLWTP, and that TOC, temperature, and NH3-N should be regularly monitored in the GYWTP.  相似文献   

5.
Brominated organic and inorganic by-products are generated during ozonation of groundwater containing high bromide concentrations. This study measured concentrations of bromate, bromoform, bromoacetic acids, bromoacetonitriles, bromoacetone, 2,4-dibromophenol and aldehyde generated by ozonation. The potential mutagenicity of ozonated waters was assessed using the Ames and Microtox tests. Test results for the 18 ozonated groundwater samples demonstrate that bromate formation is associated with high pH, bromide and alkalinity content, low levels of dissolved organic carbon (DOC) and ammonia, and low alkalinity. Brominated organic by-products were correlated with high bromide ion and natural organic matter content, and low ammonia concentrations. The Ames test results demonstrate that all extracts from ozonated water have mutagenic activity; however, the 18 raw groundwater samples had no mutagenicity. The Microtox test results also show that the ozonated water samples were highly toxic. Generally, both bromide and DOC content promoted the formation of ozonation by-products and mutagenicity. Controlling of bromide and DOC concentrations is an effective method of reducing potential by-product formation and eliminating mutagenicity problems associated with groundwater ozonation.  相似文献   

6.
The present study used ultraviolet absorption (UVa) and the florescence intensity (FI) to evaluate the coagulation efficiency for removing dissolved organic carbon (DOC) in the raw water from Min-Ter, Li-Yu-Ten and Yun-Ho-Shen reservoirs in Taiwan. The results indicated that the ratio of DOC removal rate and FI removal rate was maintained at about 1 at various coagulant dosages. However, the ratio of DOC removal rate and UVa removal rate decreased as the coagulant dosage increased. In addition, after coagulation, the use of florescence intensity instead of total organic carbon (TOC) is better than UVa for measuring the DOC removal rate of the raw waters gathered in different months from the three reservoirs. Furthermore, a good linear relationship between florescence intensity and DOC removal rate was observed, and the DOC/FI ratio of raw water from each reservoir can be used to predict the DOC residual concentration after enhanced coagulation. This result shows that fluorescence analysis can be used for on-line and continuous monitoring the effectiveness of organic matter removal in water treatment.  相似文献   

7.
This study investigates the microorganism growth indicator and determines the assimilable organic carbon (AOC) content at the Cheng-Ching Lake Advanced Water Treatment Plant (CCLAWTP) in Kaohsiung, Taiwan. Notably, AOC is associated with the biological stability within the water distribution network and has garnered considerable attention in the environmental engineering field in recent years. Water samples were collected from the effluent of each unit in CCLAWTP once monthly during December 2008 to November 2009. Items of water quality related to carbon concentration levels, including AOC, total organic carbon, dissolved organic carbon, UV254, and specific ultraviolent absorbance were analyzed. Analytical results demonstrate that the average AOC concentration in raw water was 83.61 ??g/L and reduced in freshwater was controlled at an average of 50 ??g/L after an advanced treatment system of roughly 54% of AOC was removed in compliance with treatment plant standards. If AOC concentrations in freshwater can be reduced, study results can provide a direction for improving water treatment capabilities.  相似文献   

8.
Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.  相似文献   

9.
Soil-aquifer treatment (SAT) of wastewater is an increasingly valued practice for replenishing aquifers due to ease of operation and low maintenance needs and therefore low cost. In this study, we investigated the fate of endotoxins through laboratory-scale SAT soil columns over a four month period. The effluent of rapid sand filtration was run through the columns under gravity flow conditions. Four SAT columns were packed with four different filter materials (fine sand, medium sand, coarse sand and very coarse sand). The effluent of rapid sand filtration (average dissolved organic carbon (DOC) = 4 mg l(-1) and average endotoxin concentration = 4 EU ml(-1)) was collected from a domestic wastewater treatment plant in Sapporo, Japan. DOC removal ranged from 12.5% to greater than 22.5% during the study, with DOC levels averaging 3.1 and 3.5 mg l(-1) for the SAT columns packed with different soils. Endotoxin transformation exhibited different profiles, depending on the time and soil type. Reduction in endotoxin concentration averaged 64.3% and was as high as 86.7% across the soil columns 1, 2, 3 and 4, respectively. While DOC removal was gradual, the reductions in endotoxin levels were rather rapid and most of the removal was achieved in the top layers. Soil with a larger grain size had lower efficiency in removing endotoxin. Tests were performed to evaluate the transformation of organic matter showing endotoxicity and to determine the mechanisms responsible for changes in the structural and size properties of dissolved organic matter (OM) during SAT. Dissolved OM was fractionated using Sep-Pack C18 Cartridges into hydrophobic and hydrophilic fractions. Dialysis tubes with different molecular weight cut-offs were used to perform size fractions of OM showing endotoxicity. Evaluation of the transformation of organic matter showing endotoxicity during SAT indicated that both hydrophobic and large molecules were reduced. Moreover, experimental findings showed that adsorption test data fit to the Freundlich isotherm and were affected by the particle grain size with higher adsorption capacity for fine and medium sand.  相似文献   

10.
The potential biodegradation and subsequent transformation of 17β-estradiol (E2) to estrone (E1) were examined in the presence of various dissolved organic matter (DOM) isolated from effluent, river and lake waters. In addition, estrogenicity was estimated in association with the removal of E2 via its sorption onto DOM and biodegradation. The more biodegradable lake-derived DOM promoted more extensive transformation of E2 into E1 than the effluent organic matter through a biodegradation process. Overall, under all conditions, biodegradation dominated the removal of E2 in water. The increased dissolved organic carbon (DOC) concentrations in river and lake-derived DOM (e.g. 6.5 mg C L(-1)) reduced the removal of E2 by decreasing its biodegradation due to the moderate sorption of E2 onto DOM. The effluent organic matter showed greater removal of E2 via biodegradation, as well as significantly high sorption. This was associated with a large amount of hydrophobic fulvic acid (FA)- and humic acid (HA)-like organic components, as shown by the small increase in the specific UV absorbance at 254 nm (SUVA(254)). An increase in the DOC concentration reduced the removal of E2, resulting in high estrogenicity. The present study suggests that both organic composition and DOC concentration influenced the removal of E2 and, therefore, should be fully considered when assessing estrogenicity and its impacts on the aquatic environment.  相似文献   

11.
The appearance of assimilable organic carbon (AOC), microbial regrowth, disinfection by-products (DBPs), and pipe corrosion in drinking water distribution systems are among those major safe drinking water issues in many countries. The water distribution system of Cheng-Ching Lake Water Treatment Plant (CCLWTP) was selected in this study to evaluate the: (1) fate and transport of AOC, DBPs [e.g., trihalomethanes (THMs), haloacetic acids (HAAs)], and other organic carbon indicators in the selected distribution system, (2) correlations between AOC (or DBPs) and major water quality parameters [e.g. dissolved oxygen (DO), free residual chlorine, and bacteria, and (3) causes and significance of corrosion problems of the water pipes in this system. In this study, seasonal water samples were collected from 13 representative locations in the distribution system for analyses of AOC, DBPs, and other water quality indicators. Results indicate that residual free chlorine concentrations in the distribution system met the drinking water standards (0.2 to 1 mg l(-1)) established by Taiwan Environmental Protection Administration (TEPA). Results show that AOC measurements correlated positively with total organic carbon (TOC) and UV-254 (an organic indicator) values in this system. Moreover, AOC concentrations at some locations were higher than the 50 microg acetate-C l(-1) standard established by Taiwan Water Company. This indicates that the microbial regrowth might be a potential water quality problem in this system. Higher DO measurements (>5.7 mg l(-1)) might cause the aerobic biodegradation of THMs and HAAs in the system, and thus, low THMs (<0.035 mg l(-1)) and HAAs (<0.019 mg l(-1)) concentrations were observed at all sampling locations. Results from the observed negative Langelier Saturation Index (LSI) values, higher Ryznar Stability Index (RSI) values, and high Fe3+ concentrations at some pipe-end locations indicate that highly oxidative and corrosive conditions occurred. This reveals that pipe replacement should be considered at these locations. These findings would be helpful in managing the water distribution system for maintaining a safe drinking water quality.  相似文献   

12.
Chromophoric dissolved organic matter (CDOM) fluorescence or absorption is often proposed as a rapid alternative to chemical methods for the estimation of bulk dissolved organic carbon (DOC) concentration in natural waters. However, the robustness of this method across a wide range of systems remains to be shown. We measured CDOM fluorescence and DOC concentration in four tropical freshwater and coastal environments (estuary and coastal, tropical shallow lakes, water from the freshwater lens of two small islands, and soil leachates). We found that although this method can provide an estimation of DOC concentration in sites with low variability in DOC and CDOM sources in systems where the variability of DOC and CDOM sources are high, this method should not be used as it will lead to errors in the estimation of the bulk DOC concentration.  相似文献   

13.
The organic carbon balance of a lake with high input of allochthonous organic carbon is modelled integrating physical, chemical and biological processes. The physical model captures the behaviour of real thermal stratification in the lake for different flow situations during the period 1993–1997. The dissolved organic carbon model is based on simulated trajectories of water parcels. By tracking parcels, account is kept of environmental factors such as temperature and radiation as well as DOC quality for each parcel. The DOC concentration shows seasonal variations primarily dependent on inflow. The organic matter degradation (bacterial- and photodegradation) in the lake amounts to 1.5–2.5 mg C l–1 yr–1, where photooxidation is responsible for approximately 10%. The estimated DIC production in the lake is large compared to sediment mineralisation and primary production. The main conclusion is that the model with the selected parameterisations of the degradation processes reasonably well describes the DOC dynamics in a forest lake.  相似文献   

14.
This study assesses the prevalence of disinfection by-product (DBP) precursors in some Southeast Queensland drinking water sources by conducting formation potential experiments for the four regulated trihalomethanes (THMs), and the potent carcinogen, N-nitrosodimethylamine (NDMA). NDMA formation potentials were consistently low (<5-21 ng/L), and total THM (tTHM) formation potentials were consistently below the Australian Drinking Water Guideline (250 μg/L). NDMA concentration of finished drinking waters was also monitored and found to be <5 ng/L in all cases. The effect of coagulation and advanced oxidation on the formation of NDMA and THMs is also reported. UV/H(2)O(2) pre-treatment was effective in producing water with very low THMs concentrations, and UV irradiation was an effective method for NDMA degradation. H(2)O(2) was not required for the observed NDMA degradation to occur. Coagulation using alum, ferric chloride or poly(diallyldimethylammonium chloride) (polyDADMAC) was ineffective in removing DBPs precursors from the source water studied, irrespective of the low dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) attained. Rather, coagulation with polyDADMAC caused an increase in NDMA formation potential upon chloramination, and all coagulants led to an increased tTHM formation potential upon chlorination due to the high bromide concentration of the source water studied.  相似文献   

15.
Soils down slope of roads have been affected over decades by road salting in the UK uplands. Salt additions to fresh soil facilitate dispersal of organic matter so there is a potential risk of release of DON and DOC to nearby rivers where these run parallel to roads. Over time, however, salting enhances soil pH of naturally acid soils, and thus organic matter degradation through to CO2, thereby, lowering soil organic matter content. In addition any relatively labile organic matter may have already been dispersed. Thus, it is hypothesised that enhanced DOC mobilisation should only be a potential problem if soils not previously exposed to salt become heavily exposed in the future. This paper combines data from field observations and laboratory simulations to elucidate mechanisms controlling organic matter mobilisation processes to determine what controls spatial and temporal trends in DOC concentrations in soil solutions down slope of roads. Organic matter solubilisation is dependent on the degree of road salt exposure soils have had. The laboratory experiment provided evidence that there are two competing effects upon which solubilisation is dependent (a) pH suppression and (b) sodium dispersion. Other organic matter solubility models, if correct, link quite well with the authors "when it's gone, it's gone" hypothesis.  相似文献   

16.
Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in drinking water was investigated in southern China. Fifteen and twelve PPCPs were detected with concentrations of 0-36 ng L(-1) in source water and of 0-20 ng L(-1) in treated water, respectively. Four PPCPs were detected with concentrations of approximately 1 ng L(-1) in drinking water of distribution network. Conventional water treatment processes removed the types and average concentrations of PPCPs by 30% and above 50%, respectively. Advanced water treatment processes were more efficient in the removal of most PPCPs, with the types and concentrations reduced by 50% and approximately 90%, respectively. Molecular properties of PPCPs had an important influence on their behaviors during water treatment. pK(a) (acidity coefficient) and K(oc) (organic carbon partition coefficient) of PPCPs appeared to have a combined effect on PPCPs removal during coagulation and oxidation. Adsorption and biodegradation were two possible mechanisms responsible for PPCPs removal during sand filtration.  相似文献   

17.
There is considerable interest in minimizing the chlorine residual in Japan because of increasing complaints about a chlorinous odor in drinking water. However, minimizing the chlorine residual causes the microbiological water quality to deteriorate, and stricter control of biodegradable organics in finished water is thus needed to maintain biological stability during water distribution. In this investigation, an acceptable level of assimilable organic carbon (AOC) for biologically stable water with minimized chlorine residual was determined based on the relationship between AOC, the chlorine residual, and bacterial regrowth. In order to prepare water samples containing lower AOC, the fractions of AOC and biodegradable organic matter (BOM) in tap water samples were reduced by converting into biomass after thermal hydrolysis of BOM at alkaline conditions. The batch-mode incubations at different conditions of AOC and chlorine residual were carried out at 20°C, and the presence or absence of bacterial regrowth was determined. The determined curve for biologically stable water indicated that the acceptable AOC was 10.9 μg C/L at a minimized chlorine residual (0.05 mg Cl2/L). This result indicated that AOC removal during current water treatment processes in Japan should be significantly enhanced prior to minimization of the chlorine residual in water distribution.  相似文献   

18.
The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23 % of total land cover) to agricultural (70 %) and urbanised areas (7 %). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44 %) and season (15 %), demonstrating the strong effect of land use on biogeochemical parameters.  相似文献   

19.
Progress made in analytical techniques allows the formulation of new concepts in the biogeochemistry of organic carbon. The second part of our review summarizes the latest evolution and introduces new ideas in the biogeochemistry of marine dissolved organic carbon (DOC). Via classification of different fractions and sources of DOC, characterization of its composition, age and availability for bacterial utilization, and fate of DOC, we show the role of DOC in the global carbon cycle and the significance of bulk DOC in the oceans. Special emphasis is placed on the microbial loop in the cycling of DOC and its relation with higher trophic levels (phytoplankton and zooplankton). Significant progress has also been made in the study of the roles of colloidal organic material in metal complexation, ultraviolet radiation in dissolved organic matter photochemical oxidation, and chromophore-containing constituents of DOC as the signature of DOC for satellite observations. The importance of bulk DOC in the global carbon cycle requires the inclusion of this fraction in the regional and global carbon models. We predict that future DOC study in the ocean will focus on the development of sophisticated, almost continuously recording, moored DOC instrument arrays for the monitoring of small-scale DOC horizontal and vertical patchiness; widespread time series stations including estuarine, coastal and open environments; more detailed chemical characterization of different fractions of organic carbon from diverse marine habitats; parameterization of predictive models of DOC cycling on regional and global scales, incorporating the microbial loop; and finally, monitoring of DOC dynamics from satellites on regional and global scales.  相似文献   

20.
呼伦贝尔地区草原表层土壤中总有机碳与有机质初探   总被引:1,自引:0,他引:1  
通过非分散红外线吸收法测定呼伦贝尔地区具有代表性的16个草原表层土壤(0~20 cm)中总有机碳、溶解性有机碳,使用重铬酸钾容量法测定有机质,并对其总有机碳与有机质水平及两者相关性进行了分析。初步分析了造成各样品之间总有机碳水平差异的原因。结果表明,只以打草场作为利用方式的土壤总有机碳含量较常年放牧场的总有机碳含量高。从草原类型和土壤类型上看,草甸草原总有机碳含量明显高于典型草原,黑钙土总有机碳含量明显高于栗钙土。综上,过度放牧会使草原土壤总有机碳大量释放。总有机碳含量与有机质含量有显著正相关性,相关系数达到0.902。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号