首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
We studied landscape dynamics for three time periods (<1950, 1965, and 1997) along a gradient of agricultural intensity from highly intensive agriculture to forested areas in southern Québec. Air photos were analyzed to obtain long-term information on land cover (crop and habitat types) and linear habitats (hedgerows and riparian habitats) and landscape metrics were calculated to quantify changes in habitat configuration. Anthropogenic areas increased in all types of landscapes but mostly occurred in the highly disturbed cash crop dominated landscape. Perennial crops (pasture and hayfields) were largely converted into annual crops (corn and soybean) between 1965 and 1997. The coalescence of annual crop fields resulted in a more homogeneous agricultural landscape. Old fields and forest cover was consistently low and forest fragmentation remained stable through time in the intensive agriculture landscapes. However, forest cover increased and forest fragmentation receded in the forest-dominated landscapes following farm abandonment and the transition of old fields into forests. Tree-dominated hedgerows and riparian habitats increased in areas with intensive agriculture. Observed changes in land cover classes are related to proximate factors, such as surficial deposits and topography. Agriculture intensification occurred in areas highly suitable for agriculture whereas farm abandonment was observed in poor-quality agriculture terrains. Large-scale conversion of perennial crops into annual crops along with continued urbanization exerts strong pressures on residual natural habitats and their inhabiting wildlife. The afforestation process occurring in the more forested landscapes along with the addition of tree-dominated hedgerows and riparian habitats in the agriculture-dominated landscapes should improve landscape ecological value.  相似文献   

2.
Ecological security has become so important that it will affect the national security and social sustainable development. In this paper, a case study on the ecological security indexes of modern oasis landscapes in Beitun Oasis, Xinjiang, was carried out. The spatial neighbouring parameters, such as the contiguous length, measure of area and patch quantity of oasis landscape patches, affected by desert landscape patches were calculated by using GIS-based buffer analysis, the method of calculating ecological security indexes of oasis landscape was developed, and the dynamic changes of patterns and ecological security indexes of the oasis landscapes since recent 30 years were analyzed. The results showed that soil salinization or alkalization and paludification were major factors affecting the ecological security in Beitun Oasis. Therefore, measures should be taken actively to prevent and control secondary salinization and paludification. The ecological security indexes of the oasis landscape in 1972, 1990 and 2005 were 78.91, 82.28 and 83.86, respectively, which showed the degree of security is improving, and the environment was developing harmoniously between human and nature. The methods of evaluating ecological security based on the spatial neighbouring relations between landscape patches can be used to reflect preliminarily the ecological security patterns of landscapes.  相似文献   

3.
A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.  相似文献   

4.
This article analyzes landscape pattern in the WesternGhats mountain ranges in south-western India at two scales,comparing small-scale, detailed studies of landscapepattern, with broader, regional-scale assessments of theWestern Ghats. Due in large part to their inaccessibility,relatively little is known about the landscapes of thisbiodiverse region, which also supports some of the highestpopulation densities in the world. A broad-scale NDVI-basedIRS 1B satellite image classification is used to analyzenorth-south and east-west trends across the entire WesternGhats and western coast of India, an area over 170 000 km2. Northern and eastern landscapes are morefragmented compared to the southern and western slopes.Western slopes also have greater landscape diversity withland cover types more interspersed compared to the easternslopes. These differences can be related to north-south andeast-west variations in rainfall and plant distribution. Data from thirteen landscapes 10–50 km2 in area, arefurther utilized to analyze trends in landscape pattern, anddescribe the geographical distribution of major natural andmanaged ecotope types. At this scale, very high levels ofintra-ecotope type variability in landscape pattern areencountered for all land cover types. Results at these twoscales are integrated to suggest a hierarchical stratifiedapproach for monitoring land cover and biodiversity in the region.  相似文献   

5.
The sensitivity of soil landscapes to climatic variability andhydroclimatic events can be expressed as a landscape change safety factor, the ratio of potential disturbance to resistance to change. The use of a geographic information system (GIS) enables the spatially-explicit modeling of landscape sensitivity, but also raises the risk of violating the characteristic scales of disturbance and resistance, because the GIS technically simplifies the extrapolation of models, and associated concepts, to landscapes and scales notrepresented by the digital data base. Embedding landscape sensitivity into hierarchy theory, the formal analysis of the hierarchical structure of complex systems, provides a conceptual framework for the transfer of models and variablesamong landscape scales. In the subhumid southern Canadian plains, major hydroclimatic events (strong winds, intense rain,rapid snow melt) cause much of the physical disturbance of soillandscapes and terrestrial ecosystems. Prolonged dry or wet weather influences the resistance of soil and vegetation to these events. The potential disturbance of soil landscapes therefore can be derived from the probabilities of extreme events and seasonal conditions, as recorded in instrumental and proxy climate records. This time series analysis can belinked to the modeling of landscape sensitivity by establishingthe probabilities of hydroclimatic events and climatic conditions which may exceed or lower the resistance of individual soil landscapes.  相似文献   

6.
The scale of investigation for disturbance-influenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact locations are unknown. This research quantified disturbance proportion and pattern (as contagion) at multiple scales across North America. This pattern of scale-associated variability can guide selection of study and management extents, for example, to minimize variance (measured as standard deviation) between any landscapes within an ecoregion. We identified the proportion and pattern of forest disturbance (30 m grain size) across multiple landscape extents up to 180 km2. We explored the variance in proportion of disturbed area and the pattern of that disturbance between landscapes (within an ecoregion) as a function of the landscape extent. In many ecoregions, variance between landscapes within an ecoregion was minimal at broad landscape extents (low standard deviation). Gap-dominated regions showed the least variance, while fire-dominated showed the largest. Intensively managed ecoregions displayed unique patterns. A majority of the ecoregions showed low variance between landscapes at some scale, indicating an appropriate extent for incorporating natural regimes and unknown future disturbances was identified. The quantification of the scales of disturbance at the ecoregion level provides guidance for individuals interested in anticipating future disturbances which will occur in unknown spatial locations. Information on the extents required to incorporate disturbance patterns into planning is crucial for that process.  相似文献   

7.
Mountain protected landscapes continuously endure conflicts of appropriation that bear inherent transformations. One type of direct intervention is by Commercial Concessions within these areas, affecting their landscape value. The aim is to determine conceptual gaps in Environmental Impact Studies regarding landscape assessment and propose a way to improve them in this sense.Shortcomings regarding landscape are checked in different normative frameworks and tensions are analyzed through the case of a Commercial Concession grant within a Mountain Protected area in the South-Central Andes of Chile (38°22′S;71°35′W).Weak or absent definitions of landscape are found in normative frames and Environmental Impact guidelines. A reductionism of landscape as mere viewshed units avoids a proper differentiation for several types of economic transformations and conservation management purposes therein. Hence, transformations affecting the inherent value of landscape are latent under monitoring and legislation abiding practices.Tensions between protected areas and commercial concessions depend on landscape management strategies which are associated to capital gain uncertainties by risking the nonuse-value of landscape. This uncertainty as a natural insurance value can be integrated to conceptual analyses assessing landscape transformations and report their depreciation.These transformations of landscape value are deemed necessary to be implemented in Environmental Impact Assessment without having to discretize bipartite purposes in protected areas by assessing landscape value through conceptual and economic analyses.  相似文献   

8.
If the goal for managing rangelands is to achieve a balance between production and conservation, then monitoring is essential to detect change and apply corrective action. In some range-land areas of northern Australia, monitoring has detected a tilt in the production-conservation balance towards excessive production. How big is this imbalance? Can it shift back? Robust monitoring is needed to answer these questions. The aim is to know what to monitor, and where. For example, to detect changes caused by livestock on rangeland forage production and soil erosion, indicators linking grazing disturbances to landscape function are needed, that is, indicators that signal how well landscapes are capturing, concentrating, and utilizing scarce water, nutrient, and organic resources. Studies in Australia and the USA document that simple vegetation and soil patch attributes can be measured as indicators of the 'state of health' of landscape function. For example, field and remote sensing-based grazing studies in Australia document that landscapes with a high cover of perennial plant patches function effectively to capture runoff water and nutrients in sediments, whereas landscapes with a low cover of these patches do not — they are dysfunctional — as indicated by large patches of bare soil. Aerial videography is proving to be a robust technique for measuring indicators of landscape function such as small patches of vegetation and the extent of bare soil. These indicators typically have a sigmoidal response to grazing impacts. We illustrate that if these indicators are measured on monitoring sites established near the sigmoidal 'point of inflection’ then small changes in these indicators can be detected.  相似文献   

9.
This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements -habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land- whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index.Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50×20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators.The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.  相似文献   

10.
The predicted increase in climate warming will have profound impacts on forest ecosystems and landscapes in Canada because of increased temperature, and altered disturbance regimes. Climate change is predicted to be variable within Canada, and to cause considerable weather variability among years. Under a 2 × CO2 scenario, fire weather index (FWI) is predicted to rise over much of Ontario by 1.5 to 2 times. FWI may actually fall slightly, compared to current values, in central eastern Ontario (Abitibi), but for central-south Ontario it is expected to rise sharply by as much as 5 times current values. We predict that the combination of temperature rise and greater than average fire occurrence will result in a shrinkage of area covered by boreal forest towards the north and east; that some form of Great Lakes forest type will occupy most of central Ontario following the 5 C isotherm north; that pyrophilic species will become most common, especially jack pine and aspen; that patch sizes will initially decrease then expand resulting in considerable homogenization of forest landscapes; that there will be little 'old-growth' forest; and that landscape disequilibrium will be enhanced. If climate change occurs as rapidly as is predicted, then some species particularly those with heavy seeds may not be able to respond to the rapid changes and local extinctions are expected. Anthropogenically-altered species compositions in current forests, coupled with fire suppression over the past 50 years, may lead to forest landscapes that are different then were seen in the Holocene period, as described by paleoecological reconstructions. In particular, forests dominated by white pine in the south and black spruce in the middle north may not be common. Wildlife species that respond at the landscape level, i.e., those with body sizes >1 kg, will be most affected by changes in landscape structure. In particular we expect moose and caribou populations to decline significantly, while white-tailed deer will likely become abundant across Ontario and Quebec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号