首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminium (Al) toxicity is usually associated with acid rain and acidified freshwater systems. The present work demonstrates that acute fish mortality (50%) also occurs in moderate acidified salmon rivers during sea salt episodes. Furthermore, catchment liming was proved to be an efficient measure to counteract the fish toxicity. The impact of sea salt episodes on river water qualities and on Atlantic Salmon (Salmo salar L.) was studied in two rivers situated at the west coast of Norway. During February-May 2002, fish were kept in tanks and continually exposed to the changing water qualities. Changes in Al-species were followed using in situ fractionation techniques. During storm events and high sea salt deposition, the sea salt concentration increased (190 to 580 microM Cl), pH decreased (pH 5.3 to 4.6) and the concentration of low molecular mass (LMM) cationic Al-species (Al(i)) increased (0.7 to 3.0 microM) in the river. Subsequently, Al accumulated in fish gills (6 to 19 micromol g(-1) dw) causing ionoregulatory and respiratory failures as well as mortality. In water the concentration of LMM Al(i) stayed enhanced during four weeks, while the physiological stress responses in surviving fish remained high for a longer time (>eight weeks). To counteract Al toxicity, one of the tributary catchments had been limed four years earlier. Due to catchment liming (1000 kg ha(-1)) the water concentration of LMM Al(i)(<0.7 microM) and the Al accumulation in gills remained relatively low (<7 micromol g(-1) dw) during the storm and no fish mortality occurred.  相似文献   

2.
Dissolved aluminium concentrations ([Al]) in the <0.45 μm filtered fraction are described for 54 UK river sites covering rural, acidic/acid sensitive, agricultural and urban typologies, and wide pH range (4 to 11). High [Al] occurred under acidic conditions and for acid runoff neutralised by bicarbonate rich groundwater. Thermodynamic analysis indicates Al hydroxide/hydroxy-silicate oversaturation at circumneutral pH across the rivers, but undersaturation at lower/higher pH. The oversaturation reflects in part the presence of Al bearing colloids as indicated by (1) [Al] being correlated with components associated with both lithogenic (Fe, Ti and lanthanides) colloids and organic carbon, (2) baseflow studies using cross-flow ultrafiltration and (3) comparison of our data with Acid Waters Monitoring Network (AWMN) information on labile and non-labile Al. Tree harvesting and emission reductions of SO(x) in acidic and acid sensitive catchments in mid-Wales led to acidification reversal, lower [Al] and changing [H(+)] - [Al] relationships. The [Al] decline was confined to acidic conditions while [Al] increased during the later part of the monitoring period with a peak around 2002 for moorland and forested systems. Colloidal production across the flow range was indicated late in the record by comparison of our data with information collected by the AWMN for a site in mid-Wales. This production seems interlinked with organic carbon and with dissolved CO(2) changes. In order for further understanding of Al hydrogeochemistry in river systems there is a need to integrate research that moves from equilibrium to kinetic and colloidal consideration including the critical issues of organic and inorganic controls within the context of bioavailability and aquatic stress. The colloidal Al may well be of low environmental concern to fish and other factors such as habitat may well be critical.  相似文献   

3.
Al is a critical ecotoxicant in surface waters impacted by acidic deposition. Apart from the most acidic surface waters, Al concentrations are often considered to be controlled by Al(OH)(3) or aluminosilicate (clay) solubility for modelling studies. For many UK rivers there is no clear evidence for such solubility controls even though there is the potential under moderately acidic/alkaline conditions. Here, Al solubility in ground and river water is compared for acid sensitive catchments in mid-Wales. The results reveal that there may be a solubility control within the groundwater but a more complex state of affairs within the river. The groundwater is of high CO(2) content and once in the river it degasses to raise pH. However, there is limited change in Al concentration and hence the solubility relationship is lost. The results flag the potential importance of groundwater solubility controls for Al and the potential for the groundwater zone to act as an Al filter. For positive alkalinity groundwaters, the high CO(2) levels depress the pH to near the value for minimum Al solubility. However, there is no simple groundwater end-member. Examining Al solubility controls solely within the rivers provides cryptic and misleading clues to the hydrogeological controls for Al within catchments. Assessing the within-catchment processes requires direct measurement with full consideration of both inorganic and organic attenuation.  相似文献   

4.
Mercury (Hg) records in natural archives such as peat bogs are often used to evaluate anthropogenic or climatic influences on atmospheric Hg deposition. In this context, there is an ongoing discussion about natural sources or processes of Hg enrichment in natural archives. In the present study we estimated Hg fluxes from rock weathering, direct atmospheric deposition and from indirect atmospheric deposition in the catchment of a pristine minerogenic fen (GC2) located in the Magellanic Moorlands, southernmost Chile. The Hg record in the bog covers 11 174 cal. (14)C years and shows Hg concentrations of up to 570 [micro sign]g kg(-1) with an average of 268 [micro sign]g kg(-1). Hg was found to be enriched in the peat by a factor of 81 if compared to the mean Hg concentrations in the rocks of the catchment (3.2 [micro sign]g kg(-1)). Hg and also Pb, Fe, and As were found to be enriched predominately in goethite layers indicating high retention of these elements in the bog by iron oxyhydrates. It could also be demonstrated that the high peat decomposition rates in minerogenic bogs can increase the Hg concentrations in the minerogenic peat by a factor of approximately 2 at the same atmospheric Hg deposition rate if compared to ombrotrophic sites. This study has shown that Hg in minerogenic peat can be naturally enriched especially through the retention by autochthonous formed goethite and can be a solely internal process which does not require increased external Hg fluxes.  相似文献   

5.
Gill anomalies in two fish species (Geophagus brasiliensis and Astyanax bimaculatus) were compared among three freshwater systems with different water quality: one eutrophic river, one eutrophic reservoir, and one oligotrophic reservoir. The raised hypotheses are that reservoirs with low water quality (eutrophic) have fish with more gills anomalies compared with reservoirs with high water quality (oligotrophic), and that the more stable environmental conditions of eutrophic rivers have fish with better healthy conditions than eutrophic reservoirs that have lesser stable environmental conditions. Gills of 36 adult individuals of G. brasiliensis and 23 of A. bimaculatus collected during the winter 2008 and winter 2009 were examined, and the proportions of occurrence of nine histological alterations were compared for the two species among the three systems using a binomial t test for independent samples. Histological changes in fish gills that are reversible and unspecific, such as epithelial lifting, interstitial edema, leukocyte infiltration, hyperplasia of the epithelial cells, lamellar fusion, and vasodilatation were common in both fish species in the three systems. However, lamellar aneurism, which is a more serious and often irreversible anomaly, and lamellar blood congestion occurred only in fish from the two reservoirs. Alternatively, necrosis occurred more in fish from the river. Fish gill anomalies in both species did not differ between the two reservoirs, despite having different water quality. We rejected the hypothesis that reservoirs with lower water quality have fish with more gill injuries compared with high water quality reservoirs. Moreover, the eutrophic river seems to affect differently the healthy condition of fish species, compared with the eutrophic reservoir.  相似文献   

6.
A combined semi-distributed hydrological model (CASCADE/QUESTOR) is used to evaluate the steady-state that may be achieved after changes in land-use or management and to explore what additional factors need to be considered in representing catchment processes. Two rural headwater catchments of the River Derwent (North Yorkshire, UK) were studied where significant change in land-use occurred in the 1990s and the early 2000s. Much larger increases in mean nitrate concentration (55%) were observed in the catchment with significant groundwater influence (Pickering Beck) compared with the surface water-dominated catchment (13% increase). The increases in Pickering Beck were considerably greater than could be explained by the model in terms of land-use change. Consequently, the study serves to focus attention on the long-term increases in nitrate concentration reported in major UK aquifers and the ongoing and chronic impact this trend is likely to be having on surface water concentrations. For river environments, where groundwater is a source, such trends will mask the impact of measures proposed to reduce the risk of nitrate leaching from agricultural land. Model estimates of within-channel losses account for 15–40% of nitrate entering rivers.  相似文献   

7.
In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.  相似文献   

8.
Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients.  相似文献   

9.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in Gomti River, a major tributary of the Ganga river (India). A total of 96 samples (water and sediments) were collected from eight different sites over a period of 2 years and analysed for 16 PAHs. The total concentrations of 16 PAHs in water and bed sediments ranged between 0.06 and 84.21 ??g/L (average (n?=?48), 10.33 ± 19.94 ??g/L) and 5.24?C3,722.87 ng/g dw [average (n?=?48): 697.25 ± 1,005.23 ng/g dw], respectively. In water, two- and three-ring PAHs and, in sediments, the three- and four-ring PAHs were the dominant species. The ratios of anthracene (An)/An + phenenthrene and fluoranthene (Fla)/Fla + pyrene were calculated to evaluate the possible sources of PAHs. These ratios reflected a pattern of pyrolytic input as a major source of PAHs in the river. Principal component analysis, further, separated the PAHs sources in the river sediments, suggesting that both the pyrolytic and petrogenic sources are contributing to the PAHs burden. The threat to biota of the river due to PAHs contamination was assessed using effect range low and effect range median values, and the results suggested that sediment at some occasions may pose biological impairment.  相似文献   

10.
The goal of this work was to assess risk of chemical andbiological effects of metals in reacidified, limed water bodiesin Norway and Sweden. The risk assessment is based on aliterature review and evaluations of water chemical data fromthe 1995 Nordic Lake Survey. Compared to the pre-liming period,it us unlikely that enhanced remobilization of inorganicaluminium (Al) or other toxic metals (metal bomb hypothesis)from the catchment, the lake sediment and/or the streambed willoccur when limed waters reacidify. Rather, the concentrationsin surface waters are expected to be lower than before limingstarted, because of reduced atmospheric inputs of both strongacids and metals as Cd, Hg, Pb, and Zn during the last 10–20 yr. The concentrations in lakes relative to the biologicaleffect levels, as well as the chemical properties of thedifferent metals suggest that the potential biological risksassociated to reacidification of limed lakes decrease in theorder Al > Cd > Pb. The risks associated with Cr, Cu, Fe, Mn, Ni and Zn are very low and do not have to be consideredexcept in waters with known concentrations larger than the lowest biological risk level. Such waters are very rare (<2%). Aluminium is the metal that should be used to set the limit for judging the risk of biological damage due to reacidification of limed surface waters.  相似文献   

11.
In-situ caged rainbow trout (Oncorhynchus mykiss) studies reveal significant fish toxicity and fish stress in a river impacted by headwater acid rock drainage (ARD). Stocked trout survival and aqueous water chemistry were monitored for 10 days at 3 study sites in the Snake River watershed, Colorado, U.S.A. Trout mortality was positively correlated with concentrations of metals calculated to be approaching or exceeding conservative toxicity thresholds (Zn, Mn, Cu, Cd). Significant metal accumulation on the gills of fish stocked at ARD impacted study sites support an association between elevated metals and fish mortality. Observations of feeding behavior and significant differences in fish relative weights between study site and feeding treatment indicate feeding and metals-related fish stress. Together, these results demonstrate the utility of in-situ exposure studies for stream stakeholders in quantifying the relative role of aqueous contaminant exposures in limiting stocked fish survival.  相似文献   

12.
Suitable techniques have been developed for the extraction of arsenic species in a variety of biological and environmental samples from the Pak Pa-Nang Estuary and catchment, located in Southern Thailand, and for their determination using HPLC directly coupled with ICP-MS. The estuary catchment comprises a tin mining area and inhabitants of the region can suffer from various stages of arsenic poisoning. The important arsenic species, AsB, DMA, MMA, and inorganic arsenic (As III and V) have been determined in fish and crustacean samples to provide toxicological information on those fauna which contribute to the local diet. A Hamilton PRP-X100 anion-exchange HPLC system employing a step elution has been used successfully to achieve separation of the arsenic species. A nitric acid microwave digestion procedure, followed by carrier gas nitrogen addition- (N2)-ICP-MS analysis was used to measure total arsenic in sample digests and extracts. The arsenic speciation of the biological samples was preserved using a Trypsin enzymatic extraction procedure. Extraction efficiencies were high, with values of 82-102%(As) for fish and crustacean samples. Validation for these procedures was carried out using certified reference materials. Fish and crustacean samples from the Pak Pa-Nang Estuary showed a range for total arsenic concentration, up to 17 microg g(-1) dry mass. The major species of arsenic in all fauna samples taken was AsB, together with smaller quantities of DMA and, more importantly, inorganic As. For sediment samples, arsenic species were determined following phosphoric acid (1 M H3PO4) extraction in an open focused microwave system. A phosphate-based eluant, pH 6-7.5, with anion exchange HPLC coupled with ICP-MS was used for separation and detection of AsIII, AsV, MMA and DMA. The optimum conditions, identified using an estuarine sediment reference material (LGC), were achieved using 45 W power and a 20 minute heating period for extraction of 0.5 g sediment. The stability and recovery of arsenic species under the extraction conditions were also determined by a spiking procedure which included the estuarine sediment reference material. The results show good stability for all species after extraction with a variability of less than 10%. Total concentrations of arsenic in the sediments from the Pak Pa-Nang river catchment and the estuary covered the ranges 7-269 microg g(-1)and 4-20 [micro sign]g g(-1)(dry weight), respectively. AsV was the major species found in all the sediment samples with smaller quantities of AsIII. The presence of the more toxic inorganic forms of arsenic in both sediments and biota samples has implications for human health, particularly as they are readily 'available'.  相似文献   

13.
An assessment of suspended sediment transport was carried out in a number of semiarid catchments during flood events in order to quantify the degradation rates. In order to quantify these, a systematic sampling procedure of the episodic flood events was proposed for representative catchments. The procedure allows for an integration over the whole run-off episode using both the rising and falling limbs of the run-off hydrograph to compute the sediment quantities for each individual flood event. Higher sediment concentrations occurred in the rising limb than those at the recession for any stage of flow. The maximum suspended sediment concentration was observed at the peak of the flood hydrograph. An integration of the sediment concentration over its duration gave the total sediment yield from the flood event. For the ephemeral channels, only a small number of flood events were observed over a three-year experimental period each with a duration of the order of 3–6 h. It is notable that high sediment loads were associated with high flow volumes which were effectively the result of the catchment characteristics and incident rainfall causing the flood events in the respective catchments. A large percentage of the annual sediment yield from a catchment is transported by the ephemeral streams during a small number of flood events. The correct determination of the total sediment yield from any of the flood events depends entirely on the accuracy of the measurements. The understanding of run-off and sediment loss for the representative catchments aims at assisting planning, management and control of water and land resources for sustainable development in the semi-arid parts of the tropics. The sediment rates reveal the degradation of catchments which have repercussions on the crop and pasture production and this has a bearing on the soil and water conservation programmes in the delicate ecological balance of the semi-arid areas. Further, these rates will determine the lifespan of the reservoirs planned for the dry river valleys (ephemeral streams) and existing ones which serve livestock and domestic needs. These occasionally will require costly rehabilitation and scooping to increase effective storage unless conservation measures are taken, and these measures are bound to vary from place to place as per the representative catchments output.  相似文献   

14.
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.  相似文献   

15.
In most European member states, more or less completely new monitoring networks and assessment methods had to be developed as basic technical tools for the implementation of the EU Water Framework Directive (WFD). In the river basin of the Stever, the largest tributary to the river Lippe (River Rhine, Northrhine-Westphalia, Germany), a WFD-monitoring network was developed, and new German biological methods for rivers, developed for the purposes of the WFD, have been applied. Like most rivers in the German lowland areas, nearly all the river courses of the Stever system are altered by hydro-morphological degradation (straightening, bank fixation, lack of canopy etc.). In 2005 and 2006, the biological quality components of macroinvertebrates, fish and macrophytes were investigated and evaluated for the assessment of the ecological status of about 50 surface water bodies within the whole Stever system. Basic physical and chemical parameters, as well as priority substances, have been analysed in the same period. In this contribution, the design of the new monitoring network, the core principles of the German biological methods, and the most important results of the pilot monitoring will be presented. As main impacts with severe effects on the faunal and floral communities, the many migration barriers and the bad quality of the river morphology could be stated. Organic pollution is no more a severe problem in the Stever. The pilot project was successfully conducted in close collaboration with the water authorities (District Government Münster) and the water association Lippeverband.  相似文献   

16.
Water quality evaluation of Kanhan river and its tributaries viz. Pench and Nag rivers was carried out in order to assess the qualitative changes and possibility of point and non-point pollution loads in these rivers for the post monsoon and summer seasons. pH, turbidity, conductivity, total alkalinity and total hardness were found in the range 7.18.7, 0.835 (NTU), 227970 (microScm(-1)), 7.18.7, 158486 (mg/L) and 142246 (mg/L), respectively. Ca, Mg, Na and K were in the range 2462, 1328, 15183 and 333 mg/L, respectively. The respective ranges of Cl, SO(4), NO(3) and PO(4) were observed between 19102, 823, 332 and 0.11.4 mg/L. DO and COD in the rivers ranged between nil to 8.5 and 7172 mg/L, respectively. Absence of DO and higher COD in Nag river is due to its sewage content from Nagpur city. Nag river showed higher bacterial counts than Kanhan and Pench rivers. The temporal and spatial variability in the river water quality may be attributed to catchment characteristics, agricultural and urban activities in catchment and on the bank of the river. The values of RSC, ESP and SAR indicated that the water of Kanhan and Pench rivers are suitable, whereas that of Nag river is unsuitable for irrigation purpose.  相似文献   

17.
The Linggi river drainage basin in Negeri Sembilan, Malaysia supplies water to the whole of Port Dickson district and meets 50% of the Seremban district needs. The Linggi River, the main tributary, passes through the highly urbanised and densely populated Seremban district while the water treatment plant is located 16 km downstream. In 1979 the USEPA declared the river unsuitable as a source of raw water whereas the WHO classified it as being heavily polluted requiring more extensive and effective treatment. In order to meet the WHO drinking water standards, an ozonation system was installed in the conventional water treatment plant. The objective of ozonation is for the control and removal of organic micropollutants and other deleterious matters. This study investigated the concentrations and distribution of organic micropollutants, heavy metals, and bacteriological counts in water samples collected from within the catchment and the treated water. The effectiveness of the ozonation system was also studied. The total level of phenolic water pollutants in the catchment was generally found to be very much higher than the maximum recommended level of 2.0 µgl-1. The extensive treatment process carried out at the plant was very effective in reducing the levels of total phenols in the treated water to less than 1.0 µgl-1. However the process was not efficient enough to reduce the levels of some heavy metals as required by the standards, for examples Cd and Pb were still three times higher than the standards of 5µgl-1 and 0.05 mgl-1 respectively. For bacteriological study, coliform group of bacteria, Salmonella, faecal streptococci and injured coliform were monitored in the raw and treated water. The raw water contained coliforms about 1000 times higher than the required standard for raw ater, but after the secondary treatment by ozonation coliform bacteria were absent, however a small number of Salmonella was still present occasionally. The study also showed that restructuring of the district and relocating of some commercial activities along the river banks to other areas carried out over the last five years has improved the general quality of the river water.  相似文献   

18.
Monitoring studies and thermodynamic modeling were used to reveal the changes of inorganic chemical species of some water pollutants (nutrients and trace metals such as Fe, Mn, Zn, Cu, Cd and Pb) inthe river-estuary-sea water system. The case studies were two rivers, Kamchiya and Ropotamo, representing part of the Bulgarian Black Sea water catchment area, and having different flow characteristics. There were no major differences in inorganic chemical species of the two river systems. NO3(-) and NO2(-) chemical species showed no changes along the river-estuary-sea water system. Concerning phosphates six different species were calculated and differences between the three parts of the systems were established. The HPO4(2-) and H2PO4(-) species were found to be dominant in river waters. The H2PO4(-) species quickly decreased at the expense of HPO4(2-) and Ca, Mg and Na phosphate complexes in estuary and seawater. Trace metals showed a great variety of chemical species. Fe(OH)2(+) species prevailed in river waters, and Fe(OH)3(0) species--in sea waters. Me2+ and MeCO3(0) (Me = Cu, Pb) and PbHCO3(+) were dominant in river waters, while Cu(CO3)2(2-) and PbCl(-) species appear also in sea waters. Cd2+ species prevailed in river and estuary waters, and CdCln(2-n) (n = 1-3) species, in seawater. Free Zn2+ species predominated in all systems but downstream their percentage decreased at the expense of Zn phosphates, carbonates,sulfates and chlorides complexes. Only free Mn2+ species were dominant along the systems.  相似文献   

19.
A fluorometric method developed for measuring low concentrations of ammonium in marine and freshwater ecosystems was adapted for the analysis of ammonia in ambient air. The modified method entails collection of samples on an acid-treated solid adsorbent followed by analysis using a fluorometer. Optimal results were obtained using a commercially available sorbent tube containing 100 mg of acid-treated silica gel for sample collection, and an analytical protocol consisting of sample desorption in DI water, addition of orthopthaldialdehyde (OPA) working reagent, and room temperature incubation. Method accuracy and precision were evaluated by comparing experimentally determined quantities of ammonia to expected levels for sample loadings ranging from 0.16 [micro sign]g to 550 [micro sign]g-accuracy was generally within +/-20%. The estimated LOQ for the method is 0.08 [micro sign]g ammonia per sample which represents a 25-375-fold improvement in sensitivity compared to current NIOSH and OSHA methods for the measurement of ammonia in ambient air. The new method should be useful for applications requiring measurement of low concentrations of ammonia using personal sampling equipment or in the characterization of short-term fluctuations of ammonia concentrations in air.  相似文献   

20.
Land use activities may affect surface water quantity and quality. Water quality changes (concentration increases) from land use activities that are above background but below the water quality standard or criteria have always been considered benign. Increased public interest and recent legislation and management regarding threatened, or endangered, salmon populations suggest that environmental influences on these populations need to be reevaluated.As one approach, we developed a risk assessment (toxicity and exposure) for salmon from water quality changes following timber harvesting. Toxicity relationships for nitrate-nitrogen (as an LC50) using chloride, suspended sediment, and exposure were developed from the literature and data from the Alsea Watershed Study in the Oregon Coast Range. These relationships were used to predict the probable risk to coho salmon (Oncorhynchus kisutch) to nitrate-nitrogen exposure.The control or reference catchment, Flynn Creek, had higher nitrate-nitrogen concentrations, but showed little likelihood of risk to salmon because of lower suspended sediment concentrations. The treated catchment, Needle Branch (harvested 27 years ago), had lower nitrate-nitrogen concentrations and was expected to have less risk to salmon. However, the risk assessment relationship exhibited sensitivity to suspended sediment concentrations. This smaller catchment had higher suspended sediment transport and thus a higher risk of nitrate-nitrogen exposure to salmon. The suspended sediment transport functions were based on post-treatment monitoring (1966–1973) and are not considered to represent the current situation. These findings are not meant to be categorical, but merely illustrative of this risk assessment application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号