首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
This study was conducted to biologically treat wastewater discharged from the textile industry (textiles made of cotton and/or synthetic fiber) using sequencing batch reactor (SBR) technology (activated sludge process operating on batch mode). To achieve the objectives of the study, the characteristics of textile wastewater and the biodegradation of its organic constituents under unsteady state conditions were studied. Then, a bench-scale pilot plant was used to study the performance of SBR by monitoring the settleability and change in the constituents (chemical oxygen demand and solids) over time. Results of the study showed that textile wastewater has different types of pollutants: heat, basicity, suspended solids, organic and inorganic matter, and heavy metals. The factors affecting the biodegradation of organic matter were determined as the reaction time and the ratio of initial substrate to sludge concentrations. Also, removal of solids was monitored, and the settling velocity as affected by sludge concentration was graphically presented to enable the determination of settling time. Finally, the outcome of this study was used to suggest a procedure for the design of a full-scale SBR unit for treatment of textile wastewater.  相似文献   

2.
焦化废水中的溶解性有机物(DOM)作为废水污染物和毒性的主要来源受到广泛关注。厌氧-缺氧-好氧(A-A-O)生物法联合混凝沉淀工艺在焦化废水处理中被广泛应用。于2018年4,7和11月分别采集4座焦化废水处理厂废水,采用光谱学分析手段和水生生物急性毒性试验对A-A-O联合混凝沉淀处理过程中焦化废水的DOM和毒性变化进行分析。结果表明,焦化废水中含有大量不饱和芳香性物质,其中类色氨酸、络氨酸物质占主导,其次为类溶解性微生物代谢产物、类富里酸物质和类腐殖酸类物质;未经处理的焦化废水对藻类和大型溞的急性毒性等级为中毒至高毒。A-A-O联合混凝沉淀处理可去除90%以上的类色氨酸、络氨酸和类富里酸物质,但对类腐殖酸类物质去除率相对较低,仅为约80%,关键去除段为缺氧段和好氧段;该工艺对焦化废水急性毒性削减率为80.51%~94.30%,关键削减段为厌氧段。Pearson相关性分析结果显示,焦化废水溶解性总有机碳(TOC)、类腐殖酸类物质荧光组分C1和类富里酸类物质荧光组分C4与废水急性毒性存在显著正相关关系,可利用其作为水样急性毒性初筛的指示性指标。可为焦化废水生化处理的效能优化和废水毒性控制及安全评估提供科学支撑。  相似文献   

3.
Bioassay using cultured human cell lines was applied to an effluent of a wastewater treatment plant (WWTP) in Sapporo to assess their toxicity, and in order to investigate the fate of toxicity in the WWTP, bioassay of the water samples from several points in WWTP (influent, effluent, return flow from thickener, from dewatering process and from incineration process) was performed. We also applied bioassay to the mixture of the activated sludge from the investigated plant and artificial sewage. These results showed that the toxicity of the effluent was more intensive than the influent, and organic matter released from activated sludge bacteria during their decay process contributed to the increase of toxicity in the effluent.  相似文献   

4.
Nitrification and carbon removal are investigated in aerobicbatch digestion of various sludges. The experiments arecarried out with activated sludge (Test 1) and with amixture of activated and primary settling sludge (Test2). The nitrification rate was monitored, measuring theNO2 - concentration. At the 3rd day of thedigestion 40.7 mgNO2-N/l and 3.89 mgNO2-N/l werefound in Tests 1 and 2 respectively. In a digestion process,the degradation of biomass indicates the beginning of theendogenous phase. Our measure for biomass content of thesludge was protein analysis. In Test 1, the first day valuesof 50.93 mgTOC/ gdry matter/day and 138.53mgprotein-C/gdry matter/day for specific TOC andprotein-C removal rates showed, that the digestion processbegan in the endogenous phase. For Test 2, since theendogenous phase began after removal of raw organic matter inprimary settling sludge, specific TOC and protein-C removalrates were observed to be 60.12 mgTOC/gdry matter/dayand 26.72 mgprotein-C/gdry matter/day,respectively.  相似文献   

5.
Through the use of innovative analytical tools, the removal/transformation of wastewater effluent organic matter (EfOM) have been tracked through soil aquifer treatment (SAT). While the total amount of EfOM is significantly reduced by SAT, there are trends of shorter term versus longer term removals of specific EfOM fractions. The preferential removal of non-humic components (e.g., proteins, polysaccharides) of EfOM occurs over shorter travel times/distances while humic components (i.e., humic substances) are removed over longer travel times/distances, with the removal of both by sustainable biodegradation. Dissolved organic nitrogen (DON), a surrogate for protein-like EfOM, is also effectively removed over shorter term SAT. There is some background humic-like natural organic matter (NOM), associated with the drinking water source within the watershed, that persists through SAT. While most effluent-derived trace organic compounds are removed to varying degrees as a function of travel time and redox conditions, a few persist even through longer term SAT.  相似文献   

6.
A simplified dynamic model for the activated sludge process with high-strength wastewaters is presented. The model is based on activated sludge models and predicts effluent chemical oxygen demand concentration using only four parameters. Experimental data for testing the model were obtained in an activated sludge plant using flax retting wastewater. The proposal of the model is described: mass balance to the system, selection of variables and behaviour of the theoretical values versus experimental results.  相似文献   

7.
Upon partial degradation of polar organic micropollutants during activated sludge treatment, transformation products (TPs) may be formed that enter the aquatic environment in the treated effluent. However, TPs are rarely considered in prospective environmental risk assessments of wastewater-relevant compound classes such as pharmaceuticals and biocides. Here, we suggest and evaluate a tiered procedure, which includes a fast initial screening step based on high resolution tandem mass spectrometry (HR-MS/MS) and a subsequent confirmatory quantitative analysis, that should facilitate consideration of TPs formed during activated sludge treatment in the exposure assessment of micropollutants. At the first tier, potential biotransformation product structures of seven pharmaceuticals (atenolol, bezafibrate, ketoprofen, metoprolol, ranitidine, valsartan, and venlafaxine) and one biocide (carbendazim) were assembled using computer-based biotransformation pathway prediction and known human metabolites. These target structures were screened for in sludge-seeded batch reactors using HR-MS/MS. The 12 TPs found to form in the batch experiments were then searched for in the effluents of two full-scale, municipal wastewater treatment plants (WWTPs) to confirm the environmental representativeness of this first tier. At the second tier, experiments with the same sludge-seeded batch reactors were carried out to acquire kinetic data for major TPs that were then used as input parameters into a cascaded steady-state completely-stirred tank reactor (CSTR) model for predicting TP effluent concentrations. Predicted effluent concentrations of four parent compounds and their three major TPs were corroborated by comparison to 3-day average influent and secondary effluent mass flows from one municipal WWTP. CSTR model-predicted secondary effluent mass flows agreed within a factor of two with measured mass flows and confidence intervals of predicted and measured mass flows overlapped in all cases. The observed agreement suggests that the combination of batch-determined transformation kinetics with a simple WWTP model may be suitable for estimating aquatic exposure to TPs formed during activated sludge treatment. Overall, we recommend the tiered procedure as a realistic and cost-effective approach to include consideration of TPs of wastewater-relevant compounds into exposure assessment in the context of prospective chemical risk assessment.  相似文献   

8.
Proper control of the activated sludge process is essential in ensuring production of good effluent. COD adsorption capacity (CAC) of the activated sludge could be used as a control parameter. CAC is determined by mixing the activated sludge with the settled sewage and measuring the instantaneous COD reduction per unit mass of activated sludge. CAC measures substrate removal by physical adsorption and reflects the quality of the activated sludge. CAC of a healthy activated sludge increases with the flow along the aeration units. CAC could be used for process decision on variation in air supply and feed pattern to the aeration units. In a modified process to cope with sludge bulking problem, CAC could be used to estimate the air supply to the aeration unit which is merely used for reaerating the returned sludge.  相似文献   

9.
Dissolved organic matter (DOM) in raw and treated wastewater from two breweries in Thailand was profiled and monitored for the purpose of water reclamation. The wastewater and the effluent from the use of an upflow anaerobic sludge blanket (UASB) and activated sludge (AS) were collected and analyzed through a resin fractionation method using the fluorescent excitation?Cemission matrix (FEEM) technique. The results revealed that the major organic fractions in the brewery wastewater were hydrophobic acid (HPOA) and hydrophilic base (HPIB), accounting for 65% of total dissolved organic carbon (DOC) mass for brewery A and 56% of total DOC mass for brewery B. The FEEM results indicated that the organic matter in the wastewaters of both breweries were mainly composed of tryptophan-like substances, represented by peaks C (230 nmEx/340?C365 nmEm) and D (265?C295 nmEx/315?C390 nmEm), and humic-like substances, represented by peaks E (290 nmEx/400 nmEm), F (330?C335 nmEx/395?C410 nmEm), and G (255?C265 nmEx/435?C455 nmEm). The analysis revealed that the reduction of DOM occurred mostly during the UASB treatment where most of the DOM reduction resulted from the removal of the HPOA and HPIB fractions. The HPOA fraction, a group of humic-like substances, is of particular concern when reclaiming treated brewery wastewater, and although it was reduced by more than 80% of its initial amount, it was still a dominant DOM fraction in the effluents.  相似文献   

10.
No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are useable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号