首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
During the past two decades, significant efforts have been made to study contaminant transport in the presence of colloids. Several researchers reported that colloidal particles could enhance the migration of contaminants in groundwater by reducing retardation factor. When the colloidal particles are present in the aquifer, the subsurface system can be considered as a three-phase system with two solid phases and an aqueous phase. The interaction between contaminants, colloids, and solid matrix should be considered in assessing the fate and transport of the contaminant in the groundwater flow system. In this study, a one-dimensional numerical model is developed by employing a fully implicit finite difference method. This model is based on mass balance equations and mass partition mechanisms between the carriers and solid matrix, as well as between the carriers and contaminants in a saturated homogeneous porous medium. This phenomenon is presented by two approaches: equilibrium approach and fully kinetic first-order approach. The formulation of the model can be simplified by employing equilibrium partitioning of particles. However, contaminant transport can be predicted more accurately in realistic situations by kinetic modeling. To test the sensitivity of the model, the effect of the various chemical and physical coefficients on the migration of contaminant was investigated. The results of numerical modeling matched favorably with experimental data reported in the literature.  相似文献   

2.
Abandoned landfills and dumps, where untreated waste materials were deposited in the past, are a main anthropogenic source of relevant gaseous emissions. The determination of stability is a crucial target in the context of landfill risk assessment. FTIR spectroscopy and simultaneous thermal analysis in association with multivariate statistical methods were applied to landfill materials in order to get information on the kind of waste and its reactivity. The spectral and thermal patterns are fingerprints of the material. Industrial waste and the material from a 5-year-old reactor landfill were distinguished from the defined classes of mechanically-biologically treated ("MBT") waste and 30 to 40-year-old stable landfills containing municipal solid waste and construction waste ("LF") by a classification model based on soft independent modeling of class analogy (SIMCA). Degradation experiments were carried out with the fresh material originating from one MBT plant that was subjected to aerobic and anaerobic conditions in lab-scale reactors. These samples were compared to samples of one reactor landfill and to the landfill fraction from the MBT plant to demonstrate the efficiency of the biological pretreatment before final disposal. Prediction models that are based on spectral or thermal characteristics and the corresponding reference analyses were calculated by means of a partial least squares regression (PLS-R). The developed models of the biological oxygen demand (BOD) and the dissolved organic carbon (DOC) were based on spectral data, the models of the total organic carbon (TOC) and total nitrogen (TN) were based on thermal data (heat flow profiles and mass spectra of combustion gases). Preliminary results are discussed. The enthalpy of the materials decreases with progressing mineralization, whereas the enthalpy of the remaining organic matter increases. The ratio of the enthalpies was used as an indicator of stability. Selected samples comprising old landfills, a recent reactor landfill, MBT landfills and MBT materials were classified according to the calculated ratios.  相似文献   

3.
Several wind tunnel experiments of tracer dispersion from reduced-scale landfill models are presented in this paper. Different experimental set-ups, hot-wire anemometry, particle image velocimetry and tracer concentration measurements were used for the characterisation of flow and dispersion phenomena nearby the models. The main aim of these experiments is to build an extensive experimental data set useful for model validation purposes. To demonstrate the potentiality of the experimental data set, a validation exercise on several mathematical models was performed by means of a statistical technique. The experiments highlighted an increase in pollutant ground level concentrations immediately downwind from the landfill because of induced turbulence and mean flow deflection. This phenomenon turns out to be predominant for the dispersion process. Tests with a different set-up showed an important dependence of the dispersion phenomena from the landfill height and highlighted how complex orographic conditions downwind of the landfill do not affect significantly the dispersion behaviour. Validation exercises were useful for model calibration, improving code reliability, as well as evaluating performances. The Van Ulden model proved to give the most encouraging results.  相似文献   

4.
The application of scientifically based decision making tools to help address solid waste management issues dates back to the early 1960s. Researchers continue to use operations research tools to help optimize landfill design and operating parameters. This paper discusses the application of another type of decision making tool, the analytical hierarchy process (AHP), to address priority ranking for a number of landfill engineering design and operating objectives in developing and developed countries. In this application, the AHP is used to rank, and prioritize, economic, environmental, health and safety, legislative and public perception objectives for landfill design and operations specific to landfill distance from a community, and precipitation levels. Results from a global survey using the Delphi process are included, with a discussion on the survey’s impact on the objective rankings relative to community proximity and precipitation. The Delphi process worked extremely well, and was an excellent tool to use in this application. The initial results from the objective rankings show promise in the development of an integrated model for landfill design and operation.  相似文献   

5.
A 2D analytical turbulent diffusion model for particle dispersion and deposition at different heights along the pipe flow and circumferential deposition has been developed. This liquid–solid turbulent diffusion model presented in this paper has emanated from an existing gas–liquid turbulent diffusion model. This model can be used as a handy tool for quick estimation one and two-dimensional deposition fluxes of particles in water distribution networks. A comprehensive 3D numerical investigation has been carried out using multiphase mixture model available in “Fluent 6.2” to verify the above analytical model. Different particles sizes and densities were used for 3D numerical investigations. The deposition was studied as a function of particle diameter, density, and fluid velocity. The deposition of particles, along the periphery of the pipe wall and at different depths, was investigated. Both the models findings matched with qualitative phenomena such as deposition of heavier particles at the bottom of the pipe wall were higher at lower velocities and lower at higher velocities. The lighter particles were found mostly suspended with homogeneous distribution. Smaller particles were also suspended with marginal higher concentration near the bottom of the pipe wall. This marginal higher concentration of the smaller particles was found to be slightly pronounced for lower velocity. These analogies of particles are well discussed with the ratio between free-flight velocity and the gravitational settling velocity. Extended analytical model results were compared with the 3D computational fluid dynamics simulation results. Discrepancies in the model results were discussed.  相似文献   

6.
通过分析宁东能源化工基地各大燃煤电厂以及煤化工厂固体废物样品,研究了固体废物中的汞分布规律及环境影响。结果表明:汞易在脱硫石膏、粉煤灰和气化粗渣中富集,汞浓度分别为0.16、0.24、0.15 mg/kg,而炉渣和气化细渣中的汞含量则相对较低,分别为0.05、0.03 mg/kg。通过化学组成及汞含量数据分析发现,出现这种情况的原因与汞本身易挥发的性质和固体废物的物化性质有关。此外,通过固体废物浸出毒性实验发现,脱硫石膏、粉煤灰、气化粗渣的浸出汞浓度小于浓度限值(0.1 mg/L),而气化细渣因锅炉回用,不参与填埋,汞又不易在炉渣中富集,故总体上宁东能源化工基地的固体废物无汞环境污染倾向。  相似文献   

7.
A model to simulate gas, heat, and moisture transport through a sanitary landfill has been developed. The model not only considers the different processes that go on in a landfill but also the oxidation of methane in the final cover. The model was calibrated using published results and field data from a pilot scale landfill in Calgary. The model captures the physics of the different processes quite well. Simulations from the model show that waste permeability had a significant impact on the temperature, pressure distribution, and flux from a landfill. The presence of the final and intermediate covers enhanced the gas storage capacity of the landfill. Biodegradation of the waste was enhanced as the final cover minimized the atmospheric influences. In addition, the composition of landfill gas emitted to the atmosphere was significantly different from the composition of gas generated in landfill due to the presence of covers as some of the methane is oxidized to carbon dioxide. There was no significant benefit of using a final cover of higher depth. The presence and number of intermediate covers had an impact on gas flux and temperature distribution within a landfill.  相似文献   

8.
The purpose of this paper is to assess the groundwater quality near a landfill site using the modified water quality index. A total of 128 groundwater samples were analyzed for pH, electrical conductivity (EC), total organic carbon (TOC), polycyclic aromatic hydrocarbon (PAH), Cd, Pb, Zn, Cu, Cr, and Hg. The analytical results have showed a decreasing trend in concentration for TOC, Cd, Pb, Hg, and Cu and an increasing one for pH, EC, and PAH. The modified water quality index, which was called landfill water pollution index (LWPI), was calculated to quantify the overall water quality near the landfill site. The analysis reveals that groundwater in piezometers close to the landfill is under a strong landfill impact. The LWPI in piezometers ranged from 0.52 to 98.25 with a mean value of 7.99. The LWPI in groundwater from the nearest house wells varied from 0.59 to 0.92. A LWPI value below 1 proves that analyzed water is not affected by the landfill. Results have shown that LWPI is an efficient method for assessing and communicating the information on the groundwater quality near the landfill.  相似文献   

9.
In present study focus has been given on estimating quality and toxicity of waste with respect to heavy metals and its impact on groundwater quality, using statistical and empirical relationships between different hydrochemical data, so that easy monitoring may be possible which in turn help the sustainable management of landfill site and municipal solid waste. Samples of solid waste, leachate and groundwater were analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrochemical nature. Results suggest the existence of an empirical relationship between some specific indicator parameters like heavy metals of all three above mentioned sample type. Further, K/Mg ratio also indicates three groundwater samples heavily impacted from leachate contamination. A good number of samples are also showing higher values for and Pb than that of World Health Organization (WHO) drinking water regulation. Predominance of Fe and Zn in both groundwater and solid waste samples may be due to metal plating industries in the area. Factor analysis is used as a tool to explain observed relation between numerous variables in term of simpler relation, which may help to deduce the strength of relation. Positive loading of most of the factors for heavy metal clearly shows landfill impact on ground water quality especially along the hydraulic gradient. Cluster analysis, further substantiates the impact of landfill. Two major groups of samples obtained from cluster analysis suggest that one group comprises samples that are severely under the influence of landfill and contaminated leachates along the groundwater flow direction while other assorted with samples without having such influence.  相似文献   

10.
The flow of heavy metals (Cu, Ni, Cr, Cd, Zn, Pb) and cyanide in the Kokomo, Indiana collection system and wastewater treatment plant is analyzed. The primary objective is to determine the relative contributions of domestic and non-domestic sources to the total pollutant load in the system, and to assess the levels of discharge control required for the disposal of municipal sludge by landfill or agricultural landspreading. Sampling was conducted at point source locations, in major sewer trunk-and feeder lines, and at the treatment plant. Production and waste treatment data are presented for point sources sampled for the purpose of characterizing metal and cyanide discharges as a function of these parameters. A heavy metal mass balance is attempted for the treatment plant. Metal removal factors are presented for various plant operations. A simple statistical approach is presented for the design of a cost-effective sampling program for correlating point source and trunkline pollutant sampling. The purpose is to minimize the amount of sampling required to account for pollutants seen in trunkline and treatment plant streams in terms of discharges from specific point sources.  相似文献   

11.
Nitrogen pollution in groundwater resulting from wastewater application to land is a common problem, and it causes a major threat to groundwater-based drinking water supplies. In this study, a numerical model is developed to study the nitrogen species transport and transformation in unsaturated porous media. Further, a new mass transfer module for dissolved oxygen (DO) is incorporated in the one-dimensional numerical model for nitrogen species transport to describe the fate and transport of nitrogen species, dissolved oxygen, dissolved organic carbon (DOC), and biomass. The spatial and temporal variation of dissolved oxygen is incorporated in the model through the mass transfer from gaseous phase to water phase in an unsaturated porous system. The numerical results of the water flow model and single species and multispecies transport model in an unsaturated zone developed for this purpose have been validated with the available analytical/numerical solution. The developed model is applied in clay loam, silt, and sand soils to analyze the transport behavior of nitrogen species under unsaturated condition. The numerical results suggest that the high rate of oxygen mass transfer from the air phase to the water phase positively increases the dissolved oxygen in the applied wastewater and enhances the nitrification process. Because of this high oxygen mass transfer, the nitrate nitrogen concentration significantly increases in the unsaturated zone and the same is transported to a larger depth at higher simulation period. On the other hand, the low rate of oxygen mass transfer implicitly enhances the denitrification process and finally reduces the nitrate nitrogen concentration in the unsaturated zone. The numerical results also show that the nitrate nitrogen transport is rapid in sandy soil when compared with clay loam and silty soils under high oxygen mass transfer rate. In essence, the high oxygen mass transfer rate significantly increases the nitrate nitrogen in the unsaturated zone, especially at a greater depth at larger time levels and eventually affects the groundwater quality.  相似文献   

12.
A distributed hydrologic modeling and GIS approach is applied for the assessment of land use impact in the Steinsel sub-basin, Alzette, Grand-Duchy of Luxembourg. The assessment focuses on the runoff contributions from different land use classes and the potential impact of land use changes on runoff generation. The results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land use areas in this catchment, and tends to increase for small floods and for the dry season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to the recession flow. Significant variations in flood volume, peak discharge, time to the peak, etc., are found from the model simulation based on the three hypothetical land use change scenarios.  相似文献   

13.
As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation.  相似文献   

14.
徐州市生活垃圾填埋场地下水典型金属污染物研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在对徐州地区生活垃圾填埋场调查分析的基础上,根据填埋特征和地质状况选取4座典型填埋场为调查对象,采用ICP-MS对垃圾渗滤液及地下水中26种重金属进行监测分析。结果表明,在4个垃圾填埋场地下水及渗滤液中ρ(Sr)均相对较高(700μg/L);地下水中金属元素均正在以Ca,Mg为主向Na,Mg为主转化;地下水中Al,B质量浓度大小顺序为Y场(雁群)S场(睢宁)C场(翠屏山)P场(邳州);4个垃圾填埋场共同典型重金属污染物为Mn,Fe,Zn,Ba;除上述污染物外,Y场地下水潜在典型重金属污染物为Pb和Mo;S场为Mo和As;C场为Tl和Co;P场为As。  相似文献   

15.
This paper proposes a mathematical model for life-cycle inventory analysis (LCI) of waste incineration in Switzerland. In order to model conventional and new incineration technologies adequately, fundamental aspects of the different technologies relevant for the LCI are discussed. The environmental impact of these technologies strongly depends on the assessment of the long-term emissions of the solid incineration residues and is therefore related to value based decisions about the time horizon considered. The article illustrates that the choice of the landfill model has a significant influence on the results of life-cycle assessment of waste incineration.  相似文献   

16.
Waste disposal facilities are mainly responsible for the gradual quality degradation of subsurface freshwater reservoirs. The main objective of this work is to identify the groundwater contamination risk due to potential leachate leakage and seepage beneath the municipal landfill of the City of Patras in Greece. A groundwater and leachate mass transport model of the underlying aquifer was developed for this purpose. The derived simulation results indicate that, depending on the permeability of the soil at the location of leakage, the contamination risk for the groundwater can be high. In order to quantify the magnitude and the extent of the leakage, a risk assessment model for the leachate contaminant plume was developed. The risk assessment analysis shows that the municipal drinking wells are under high risk of contamination.  相似文献   

17.
Waste disposal is an important part of the life cycle of a product and is associated with environmental burdens like any other life-cycle stages. In this study, an integrated assessment for solid waste treatment practices, especially household solid waste, was undertaken to evaluate the impact contribution of household solid waste treatment alternatives towards the sustainable development by using Life Cycle Inventory Assessment method. A case study has been investigated under various possible scenarios, such as (1) landfill without landfill gas recovery, (2) landfill with landfill gas recovery and flaring, (3) landfill with landfill gas recovery and electric generation, (4) composting, and (5) incineration. The evaluation utilized the Life Cycle Inventory Assessment method for multiple assessments based on various aspects, such as greenhouse gas emission/reduction, energy generation/consumption, economic benefit, investment and operating cost, and land use burden. The results showed that incineration was the most efficient alternative for greenhouse gas emission reduction, economic benefit, energy recovery, and land use reduction, although it was identified as the most expensive for investment and operating cost, while composting scenario was also an efficient alternative with quite economic benefit, low investment and operating cost, and high reduction of land use, although it was identified as existing greenhouse gas emission and no energy generation. Furthermore, the aim of this study was also to establish localized assessment methods that waste management agencies, environmental engineers, and environmental policy decision makers can use to quantify and compare the contribution to the impacts from different waste treatment options.  相似文献   

18.
Sediment oxygen demand (SOD) has become an integral part of modeling dissolved oxygen (DO) within surface water bodies. Because very few data on SOD are available, it is common for modeler to take SOD values from literature for use within DO models. SOD is such an important parameter in modeling DO that this approach may lead to erroneous results. This paper reported on developing an approach for monitoring sediment oxygen demand conducted with undisturbed sediment core samples, where the measured results were incorporated into a water quality model for simulating and assessing dissolved oxygen distribution in the Xindian River of northern Taiwan. The measured results indicate that a higher freshwater discharge results in a lower SOD. Throughout a 1-year observation in 2004, the measured SOD ranged from 0.367 to 1.246 g/m(2)/day at the temperature of 20°C. The mean values of the measured SOD at each station were adopted in a vertical two-dimensional water quality model to simulate the DO distribution along the Xindian River. The simulating results accurately depict the field-measured DO distribution during the low and high flow conditions. Model sensitivity analyses were also conducted with increasing and decreasing SOD values for the low and high flow conditions and revealed that SOD had a significant impact on the DO distribution along the Xindian River. The present work combined with field measurements and numerical simulation should assist in river water quality management.  相似文献   

19.
The chromium species leaching from a coal combustion fly ash landfill has been characterized as well as a novel approach to treat leachates rich in hexavalent chromium, Cr(VI), by using another natural waste by-product, acid mine drainage (AMD), has been investigated during this study. It is observed that as much as 8% (approximately 10 microg g(-1) in fly ash) of total chromium is converted to the Cr(VI) species during oxidative combustion of coal and remains in the resulting ash as a stable species, however, it is significantly mobile in water based leaching. Approximately 1.23 +/- 0.01 microg g(-1) of Cr(VI) was found in the landfill leachate from permanent deposits of aged fly ash. This study also confirmed the use of AMD, which often is in close proximity to coal combustion by-product landfills, is an extremely effective and economical remediation option for the elimination of hexavalent chromium in fly ash generated leachate. Speciated isotope dilution mass spectrometry (SIDMS), as described in EPA Method 6800, was used to analytically evaluate and validate the field application of the ferrous iron and chromate chemistry in the remediation of Cr(VI) runoff.  相似文献   

20.
A graphical heuristic was devised for locating upgradient groundwater monitoring wells near landfills. Utilizing computer-simulated contaminant plumes, the heuristic considers the direction of groundwater flow relative to the shape of a landfill, the location of the downgradient migration boundary used for configuring detection wells, and uniformity of spatial coverage. The heuristic positions upgradient wells far enough from a landfill to avoid contamination, but close enough to measure ambient water quality near the landfill. It can be adapted to nonuniform flow fields, nonlinear migration boundaries, and irregularly shaped landfills. An application to a rectangular landfill, oriented at various angles to the direction of groundwater flow, demonstrates the utility of the approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号