首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Continuous visibility monitoring has been carried out inKwangju, Korea since May 1999. The total light extinctioncoefficient b ext measured by a transmissometer andreveals seasonal trends in urban visual air quality,especially under hazy conditions with a visual range of lessthan 15 km. Seasonal atmospheric visibility under lowrelative humidity during the winter was observed to be betterthan during any other seasons. Summertime visibility wasseverely degraded due to highly increased light scattering byhygroscopic particles under high humidity atmosphericconditions. Visibility during spring and fall was alsomoderate. However, yellow sand in spring caused the lowestvisibility conditions over the measurement area for a fewdays. With continuous monitoring using the transmissometer,the daily average seasonal visual range was measured to be13.1, 9.2, 11.0, and 13.9 km in spring, summer, falland winter, respectively. Under the atmospheric humiditycondition less than 60%, visual range was observed tobe 16.1, 13.9, 15.1, and 16.6 km in spring, summer,fall, and winter, respectively. The mean light extinctionbudget by sulfate and nitrate aerosols was determined to bethe highest value of 63.71% during the summer and thelowest value of 27.08% during spring. During the `yellow sand dust' period, a mean light extinction budget by soil particles was estimated to be at an unusually high value of 44.22%.  相似文献   

2.
Episodes of large-scale transport of airborne dust and anthropogenic pollutant particles from different sources in the East Asian continent in 2008 were identified by National Oceanic and Atmospheric Administration satellite RGB (red, green, and blue)-composite images and the mass concentrations of ground level particulate matter. These particles were divided into dust, sea salt, smoke plume, and sulfate by an aerosol classification algorithm. To analyze the aerosol size distribution during large-scale transport of atmospheric aerosols, aerosol optical depth (AOD) and fine aerosol weighting (FW) of moderate imaging spectroradiometer aerosol products were used over the East Asian region. Six episodes of massive airborne dust particles, originating from sandstorms in northern China, Mongolia, and the Loess Plateau of China, were observed at Cheongwon. Classified dust aerosol types were distributed on a large-scale over the Yellow Sea region. The average PM10 and PM2.5 ratio to the total mass concentration TSP were 70% and 15%, respectively. However, the mass concentration of PM2.5 among TSP increased to as high as 23% in an episode where dust traveled in by way of an industrial area in eastern China. In the other five episodes of anthropogenic pollutant particles that flowed into the Korean Peninsula from eastern China, the anthropogenic pollutant particles were largely detected in the form of smoke over the Yellow Sea region. The average PM10 and PM2.5 ratios to TSP were 82% and 65%, respectively. The ratio of PM2.5 mass concentrations among TSP varied significantly depending on the origin and pathway of the airborne dust particles. The average AOD for the large-scale transport of anthropogenic pollutant particles in the East Asian region was measured to be 0.42 ± 0.17, which is higher in terms of the rate against atmospheric aerosols as compared with the AOD (0.36 ± 0.13) for airborne dust particles with sandstorms. In particular, the region ranging from eastern China, the Yellow Sea, and the Korean Peninsula to the Korea East Sea was characterized by high AOD distributions. In the episode of anthropogenic polluted aerosols, FW averaged 0.63 ± 0.16, a value higher than that in the episode of airborne dust particles (0.52 ± 0.13) with sandstorms, showing that fine anthropogenic pollutant particles contribute greatly to atmospheric aerosols in East Asia.  相似文献   

3.
Ambient aerosols were collected during 2000–2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 μm, and 3.2 to 5.6 μm in diameter. The two distributions represent the fine mode (<2.5 μm) and the coarse mode (>2.5 μm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 μg m−3), and the concentration is between those observed in urban areas (15–20 μg m−3) and in rural areas (4–5 μg m−3). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind.  相似文献   

4.
The radiative properties of atmospheric aerosols are determined by their masses, chemical characteristics, and optical properties, such as aerosol optical depth (AOD), Åstrom;ngström parameter (α) and single scattering albedo (SSA). In particular, the aerosol optical properties determine the surface temperature perturbation that may give some information in understanding regional atmospheric radiative forcing. To understand the radiative forcing and regional source of an aerosol, the present study focused on the analysis of the aerosol optical properties based on two different observations in the spring season, during the special Asian dust storm period. The Korean Global Atmosphere Watch Observatory (KGAWO), at Anmyeon Island, and the ACE-Asia super-site, at Gosan, Jeju Island, have measured radiations and aerosols since 2000. The sites are located in the mid-west and south of the Korean peninsula, which are strongly affected by the Asian dust coming from China every spring. The aerosol optical properties, measured by ground-based sun and sky radiometers, over both sites were analyzed to gain an understanding of the radiation and climate properties.The probability distributions of the aerosol optical depths were rather narrow, with a modal value of approximately 0.38 at both sites during 2001 and 2002. The Ångström parameter frequency distributions showed two peaks at Anmyeon GAW, but only one peak at the Jeju ACE-Asia super site. One peak, around 0.63, characterizes the situation of a day having Asian dust, the second peak, around 1.13, corresponded to the relatively dust-free cases. The correlation between the aerosol optical depth and the Ångström exponents resulted in a wide range of the Ångström parameter, α, over a wide range of optical depths at Anmyeon, whereas a narrow range of α, with moderate to low values for the AOD at Jeju. Under dust free conditions the single scattering albedo (SSA) decreased with wavelength, while in the presence of Asian dust,the SSA either stayed neutral, or increased slightly with wavelength at Anmyeon, and showed higher value than Jeju. The change in the surface temperature was highly correlated with increases in the aerosol optical depth at Anmyeon to a greater extent than at Jeju.  相似文献   

5.
Visibility impairing aerosols in the urban atmosphere of Delhi   总被引:1,自引:0,他引:1  
To study the visual air quality of Delhi, size fractionated aerosols – coarse and fine fractions of PM10 – were collected and analysed for and EC at three sites with different background activities. The analysed species constitute a smaller portion of coarse fraction (39%) but a larger portion of fine fraction (69%). The sampling was performed from June 2003 to November 2003 which covers monsoon and post monsoon seasons.Aerosol data was used to describe the spatial variation of Visibility Range as a function of chemical composition of visibility impairing aerosols. During the study period, visibility was found to be poor varying between 4.7 and 13 km with an average value of 9.4 km. It is observed that visibility impairment was more due to carbonaceous aerosol followed by sulphate.  相似文献   

6.
The column-integrated optical and radiative properties of aerosols in the downwind area of East Asia were investigated based on sun/sky radiometer measurements performed from February 2004 to June 2005 at Gwangju (35.23° N, 126.84° E) and Anmyeon (36.54° N, 126.33° E), Korea. The observed aerosol data were analyzed for differences among three seasons: spring (March-May), summer (June-August), and autumn/winter (September-February). The data were also categorized into five types depending on the air mass origin in arriving in the measurement sites: (a) from a northerly direction in spring (S(N)), (b) from a westerly direction in spring (S(W)), (c) cases with a low ?ngstr?m exponent (<0.8) in spring (dust), (d) from a northerly direction in autumn/winter (AW(N)), and (e) from a westerly direction during other seasons (AW(W)). The highest ?ngstr?m exponents (α) at Gwangju and Anmyeon were 1.43?±?0.30 and 1.49?±?0.20, respectively, observed in summer. The lowest column-mean single-scattering albedo (ω) at 440 nm observed at Gwangju and Anmyeon were 0.89?±?0.02 and 0.88?±?0.02, respectively, during a period marked by the advection of dust from the Asian continent. The highest ω values at Gwangju and Anmyeon were 0.95?±?0.02 and 0.96?±?0.02, respectively, observed in summer. Variations in the aerosol radiative-forcing efficiency (β) were related to the conditions of the air mass origin. The forcing efficiency in summer was -131.7 and -125.6 W?m(-2) at the surface in Gwangju and Anmyeon, respectively. These values are lower than those under the atmospheric conditions of spring and autumn/winter. The highest forcing efficiencies in autumn/winter were -214.3 and -255.9 W?m(-2) at the surface in Gwangju and Anmyeon, respectively, when the air mass was transported from westerly directions.  相似文献   

7.
Atmospheric aerosols are an important contributing factor to turbidity in urban areas besides having impact on health. Aerosol characteristics show a high degree of variability in space and time as anthropogenic share of total aerosol loading is quite substantial and is essential to monitor the aerosol features over long time scales. In the present study extensive observations of columnar aerosol optical depth (AOD), total columnar ozone (TCO) and precipitable water content (PWC) have been carried over a tropical urban city of Hyderabad, India. Significant variations of AOD have been observed during course of the day with low values of AOD during morning and evening hours and high values during afternoon hours. Spectral variation of AOD exhibits high AOD at smaller wavelengths and vice versa except a slight enhancement in AOD at 500 nm. Anomalies in AOD, particulate matter and black carbon concentrations have been observed during May, 2003. Back trajectory analysis of air mass during these episodes suggested variation in air mass trajectories. Analysis of the results suggests that air trajectories from land region north of study area cause high loading of atmospheric aerosols. The results are discussed in the paper.  相似文献   

8.
Ambient particles vary greatly in their ability to affect visibility, climate and human health. The fine fraction of aerosol is responsible for greater and wider effects on human health; thus, investigation of this fraction is very important. Continuous measurements of PM2.5 (particulate matter below 2.5 μm in size) concentrations at the Preila monitoring station started in 2003. During a period of 2 years, the episodes of high daily and semi-hourly concentrations of PM2.5 were measured. These episodes did not depend on the season or time of day. The substantial role of long-range transport of pollutants to these increases in concentration was shown using chemical and statistical analysis. It was found that most of the severe episodes occurred when air masses came from a specific site besides it was established that air masses of different origin were characterized by different mixing layer depth. Lower mixing depth was observed in air masses characterized by higher observed concentrations at the measuring site and vice versa. PM2.5 concentrations showed diurnal and seasonal variations whose pattern reflected the regional origin of the aerosol. The regional pollution level was evaluated by the statistical analysis of PM2.5 concentrations. The background annual average of PM2.5 mass concentration for the eastern coast of the Baltic Sea was 15.1 ± 0.8 μg m−3.  相似文献   

9.
This study aims to determine the composition of surfactants in the lake surface microlayer, rainwater, and atmospheric aerosols in the area surrounding Lake Chini, Pahang. Surfactants in the lake surface microlayer were taken from seven different stations around the lake, while samples of rainwater were taken from five different sampling stations. The samples of atmospheric aerosols were collected from the Lake Chini Research Centre which is in close proximity to the lake. The colorimetric analysis method was used to determine the composition and concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The concentration of anionic surfactants, as MBAS, in the surface microlayer ranged between 0.08 to 0.23 μmol L − 1, while the range of concentration of cationic surfactants as DBAS ranged from 0.09 to 0.11 μmol L − 1. The concentration of MBAS was higher in rainwater when compared to surfactants in the lake surface microlayer. The high concentration of surfactants in the fine mode of atmospheric aerosols suggests that natural and anthropogenic sources of surfactants contribute to the atmospheric surfactants.  相似文献   

10.
The main purpose of this paper was to carry out a source apportionment of suspended particulate matter (SPM) samples using positive matrix factorization procedure. The central and local Government of Japan introduced strict emission regulations in 2002/10 and 2003/10, respectively, in curbing SPM pollution from major metropolitans. This paper also highlighted the impact of the measures taken by the central and local Government of Japan on the reduction of SPM and the contributions of sources. SPM samples were collected for 6 years starting from 1999 to 2005 at two sites, i.e., site A (urban) and site B (suburban) of Yokohama, Japan. Microwave digestion and inductively coupled plasma-mass spectroscopy (ICP-MS) were employed to measure Mg, Al, Ca, V, Cr, Mn, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and Bi, while water soluble ions (Na + , NH4  +_{4}^{\ \,+}, K + , Ca2 + , Mg2 + , Cl − , NO3  -_{3}^{\ \,-} and SO4  2-)_{4}^{\ \,2-}) as well as carbonaceous mass (EC and OC) were analyzed using ion chromatograph and CHN analyzer, respectively. The sources identified at two sites were automobile, soil dust, marine aerosol, mixed sources, and secondarily formed aerosol. Also, source quantification was performed. Automobile and soil dust were striking contributors at site A. Automobile and soil dust of SPM aerosol might be produced from local origin at current study areas. Besides, Asian dust had an impact on high concentrations of SPM aerosol in some certain period of the year due to the outflows of East Asian emission. In contrast, secondary aerosol in the form of sulfate and ammonium as well as mixed sources (coal, long-transported Cs, and other unknown sources) were remarkable at site B. Stationary/industrial combustion has apparently more impact on the release of SPM components at site B than A. Automobile regulations in 2002 and 2003, respectively, resulted in reduction of SPM by 28% for site A and 16% for site B. There was also net reduction of automobile contribution at both sites due to the above measures being implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号