首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the interactions between tree-herb layer diversity and some physico-chemical and eco-physiological characteristics of soil in natural oriental beech stand in western Guilan, Iran. The data were collected from nine research sites (50 m?×?50 m) which were described as a gradient from pure oriental beech (Fagus orientalis Lipsky) stands to mixed stands with up to nine deciduous tree species (n =?27) in Hyrcanian forest. Herbaceous plants were sampled within ten 1 m?×?1 m sub-plots in two plots of 400 m2 which were installed randomly in each research site. Composite soil samples were taken at five positions in each research site. We found that the increase in tree diversity in mature oriental beech stands brought about an increase in microbial biomass carbon, soil carbon content, and the ratio of microbial biomass carbon to the organic carbon (Cmic/Corg). Increased soil organic carbon raised microbial biomass carbon through creating suitable environment for microorganisms. The findings also indicated that the ratio of microbial biomass carbon to the organic carbon (Cmic/Corg) increased as a quantitative indicator of soil carbon dynamics that finally benefits soil fertility of mixed oriental beech stands compared to pure oriental beech stands. The results showed that humus layer and litter thickness were negatively correlated with tree layer richness. Generally, it can be stated that maintaining a mixture of tree layer species in natural oriental beech stands results in an increase in richness and diversity values of herb plants as well as carbon content and microbial biomass carbon of soil.  相似文献   

2.
Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest—Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m2 and 883.71 g/m2 indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g?C/m2/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R 2?=?0.562) and the lowest (R 2?=?0.223) under Turkish fir.  相似文献   

3.
The influence of anthropogenic loading on the distribution of soft bottom benthic organisms of a tropical estuary (Cochin backwaters) was examined. The industrial activities were found to be high in the northern and central part of the estuary, where dissolved inorganic nitrogen (DIN > 210 ??M) and phosphorus (DIP > 6.5 ??M) have caused high abundance of chlorophyll a (up to 73 mg m???3) and accumulation of organic carbon in sediments (up to 5%). Principal component analysis distinguished three zones in the estuary. The central zone (Z1) was characterized by organic enrichment, low species diversity, and increased number of pollution tolerant species. Long-term deterioration of the estuary is indicated by an increase in the nutrients and chlorophyll a levels by sixfold during the last few decades. Flow restrictions in the lower estuary have lead to a fourfold increase in sediment organic carbon over the period of three decades. The reduced benthic diversity followed by an invasion of opportunistic polychaetes (Capitella capitata), are indicative of a stress in the estuary.  相似文献   

4.
The soils at a factory for manufacturing pentachlorophenol were heavily contaminated by polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In order to verify the contributions of dry and wet deposition of PCDD/Fs from the ambient air, the concentration of PCDD/Fs in ambient air and soil were measured, the partition of particle- and gas-phases of atmospheric PCDD/Fs was calculated, and the annual fluxes of total dry and wet PCDD/F depositions were modeled. Average atmospheric PCDD/F concentration was 1.24 ng Nm???3 (or 0.0397 ng I-TEQ Nm???3). Moreover, over 92.8% of total PCDD/Fs were in the particle phase, and the dominant species were high chlorinated congeners. The total PCDD/F fluxes of dry and wet deposition were 119.5 ng m???2 year???1 (1.34 ng I-TEQ m???2 year???1) and 82.0 ng m???2 year???1 (1.07 ng I-TEQ m???2 year???1), respectively. By scenario simulation, the total fluxes of dry and wet PCDD/F depositions were 87.1 and 68.6 ng I-TEQ, respectively. However, the estimated PCDD/F contents in the contaminated soil were 839.9 ?? g I-TEQ. Hence, the contributions of total depositions of atmospheric PCDD/F were only 0.02%. The results indicated that the major sources of PCDD/F for the contaminated soil could be attributed to the pentachlorophenol manufacturing process.  相似文献   

5.
The aims of this study were to analyse sediment characteristics and macrobenthic assemblages in two very close Italian coastal lagoons (Lesina and Varano) and to assess the different behaviour between the two basins and the relationship between sediment matrix and benthic organisms within and between the two lagoons. The comparative study was performed in July 2007 at 13 sampling sites in Lesina lagoon and 15 sites in Varano basin for sediment grain size, total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and macrobenthic structure analyses. Both lagoons were generally dominated by fine-grained sediments (clay and silt components). The average contents of TOC and TN measured in Lesina was higher than in Varano (3.31% vs 2.52% for TOC and 5,200 μg·g???1 vs 3,713 μg·g???1 for TN); in contrast, the TP was lower (540 μg·g???1 vs 620 μg·g???1). Based on macrobenthic community patterns, the central zone in Varano lagoon and the eastern area in Lesina lagoon were characterised by the lowest abundance (168.7 ind·m???2 and 503.2 ind·m???2, respectively) and by the lowest number of species, as highlighted by the diversity indices (Shannon–Wiener, H range was 0.47–1.45 for Lesina and 0.00–1.68 for Varano; Margalef species richness, d range was 0.00–1.67 for Lesina lagoon and 0.00–2.38 for Varano basin). Ordination diagrams suggested an influence of marine and freshwater inputs on the sediment distribution in Varano lagoon and on macrobenthic assemblages in Lesina lagoon.  相似文献   

6.
Amphipod crustaceans belong to the most successful invaders of aquatic environments. The work provides information concerning the spatial and temporal scales of expansion of four alien gammarid amphipods (three of them of Ponto-Caspian and one of North American origin): Pontogammarus robustoides (G.O. Sars, 1894), Obesogammarus crassus (G.O. Sars, 1894), Dikerogammarus haemobaphes (Eichwald, 1841), and Gammarus tigrinus Sexton, 1939 in the Vistula Lagoon (VL) and the Vistula Delta (VD) in 2008–2010. The mean abundance of these gammarids in nearshore zones was 382 ind?m?2 in VL and 89 ind?m?2 in VD. Their mean biomasses were likewise greater in VL (0.91 g?m?2) than in VD (0.49 g?m?2). G. tigrinus was the most dominant species in both nearshore zones of VL and VD and attained the highest frequency in these areas. The study gives evidence of total extinction of native gammarid species.  相似文献   

7.
This study performed on randomly selected seven sample plots in leguminous black locust (Robinia pceudoacacia L.) plantations and five sample plots in umbrella pine (Pinus pinea L.) plantations on coal mine soil/spoils. Soil samples were taken from eight different soil depths (0–1, 1–3, 3–5, 5–10, 10–20, 20–30, 30–40, and 40–50 cm) into the soil profile. On soil samples, bulk density, fine soil fraction (Ø < 2 mm), sand, silt and clay rates, soil acidity (pH), organic carbon (Corg), and total nitrogen (Nt) contents were investigated. Also, some forest floor properties (unit mass, organic matter, and total nitrogen) were determined, and results were compared statistically between umbrella pine and black locust. As a result, 17 years after plantations, total forest floor accumulation determined as 6,107 kg ha???1 under black locust compared to 13,700 kg ha???1 under umbrella pine. The more rapid transformation of leguminous black locust forest floor creates organic carbon that migrates further into the mineral profile, and rapid accumulation of C and N in the soil profile was registered. Slower transformation processes of forest floor under umbrella pine result in lower soil N ratio and greater quantity of forest floor. Higher soil pH under leguminous black locust was determined significantly than umbrella pine. In conclusion, the composition of symbiotic nitrogen fixation of black locust appears to be a possible factor favoring carbon and nitrogen accumulation and, consequently, soil development. Clearly, both tree species have favorable impacts on initial soil formation. The umbrella pine generates the more forest floor layer; in contrast, black locust forest floor incorporates into the soil more rapidly and significantly increases soil nitrogen in upper soil layers.  相似文献   

8.
Soil samples were collected from agricultural fields and gardens in North 24 Parganas, West Bengal, and fungi species were isolated from them. Thirty-one fungal species were isolated with 19 found in agricultural soil and 28 in garden soil. Twenty-eight out of 31 were identified using cultural and microscopic characters, and three were unidentified. The diversity of isolated fungi was calculated by Simpson’s diversity index. The garden soil possessed more fungal colonies (750) than agricultural soil (477). In agricultural soil, the dominant fungi were Aspergillus niger, Rhizopus oryzae, and Penicillium expansum, and the dominant fungi of garden soil were A. niger and Fusarium moniliforme. Simpson’s diversity index indicated that garden soil had more fungal diversity (0.939) than agricultural soil (0.896). The entomopathogenic capacity of the isolated fungi was tested against the brinjal shoot and fruit borer (Leucinodes orbonalis Guen) which is the major insect pest of brinjal. The isolated fungi were screened against larva of L. orbonalis for their entomopathogenic potential. Beauveria bassiana, A. niger, and P. expansum showed appreciable antagonism to L. orbonalis, and their lethal doses with 50 % mortality (LD50s) were 4.0?×?107, 9.06?×?107, and 1.50?×?108 spore/mL, respectively, and their times taken to reach 50 % mortality (LT50s) were 9.77, 10.56, and 10.60 days, respectively. This work suggests the restriction of chemical pesticide application in agricultural fields to increase fungal diversity. The entomopathogenic efficacy of B. bassiana could be used in agricultural fields to increase fugal diversity and protect the brinjal crop.  相似文献   

9.
The study is the first documentation of seasonal variations in species composition, abundance and diversity of tintinnid (Ciliata: Protozoa), in relation to water quality parameters along the stretch of the Hooghly (Ganges) River Estuary (HRE), eastern coastal part of India. A total of 26 species (22 agglomerated and 4 non-agglomerated) belonging to 8 genera has been identified from 8 study sites where Tintinnopsis (17 species) represented the most dominant genera, contributing up to 65 % of total tintinnid community followed by Tintinnidium (2 species), Leprotintinnus (2 species) and Dadayiella, Favella, Metacylis, Eutintinnus and Helicostomella (each with solitary species). The maximum (1,666 ind.?l?1) and minimum (62 ind.?l?1) abundance of tintinnids was recorded during post-monsoon and monsoon, respectively. A distinct seasonal dynamics in terms of biomass (0.005–2.465 μg C l?1) and daily production rate (0.04–3.13 μg C l?1 day?1) was also noticed, accounting highest value during pre-monsoon. Chlorophyll a and nitrate were found to be potential causative factors for the seasonal variations of tintinnids as revealed by a stepwise multiple regression model. The result of ANOVA showed a significant variation between species abundance and months (F?=?2.36, P?≤?0.05). k-dominance curves were plotted to determine the comparison of tintinnid dominance between the investigated stations. Based on a principal component analysis (PCA), three main groups were delineated with tintinnid ciliates and environmental parameters. The changes in lorica morphology in terms of temperature and salinity, recorded for three dominant species, provided information on the ecological characteristics of the species assemblage in this estuarine system.  相似文献   

10.
In order to identify the viable option of tillage practices in rice–maize–cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2–C emissions were quantified in between plants and rows throughout the year in rice–maize–cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2–C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4–78.1, 37.1–128.1, and 28.6–101.2 mg m?2 h?1 under CT and 10.7–60.3, 17.3–99.1, and 17.2–79.1 mg m?2 h?1 under MT in rice, maize, and cowpea, respectively. The CO2–C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2–C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2–C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize?>?cowpea?>?rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice–maize–cowpea cropping system in tropical low land soil could be adopted to minimize CO2–C emission, sustain yield, and maintain soil health.  相似文献   

11.
This study aimed at relating the variability of Ni biogeochemistry along the ultramafic toposequence to pedogenesis and soil mineralogy. Hypereutric Cambisols dominate upslope; Cambic Vertisols and Fluvic Cambisols occur downslope. The soil mineralogy showed abundance of primary serpentine all over the sequence. It is predominant upslope but secondary smectites dominate in the Vertisols. Free Fe-oxides are abundant in all soils but slightly more abundant in the upslope soils. Whereas serpentines hold Ni in a similar and restricted range in every soil (approx. 0.3 %), Ni contents in smectites may vary a lot and Mg-rich and Al-poor smectites in the Vertisol could hold up to 4.9 % Ni. Ni was probably adsorbed onto amorphous Fe-oxides and was also exchangeable in secondary smectites. High availability of Ni in soils was confirmed by DTPA extractions. However, it varied significantly along the toposequence, being higher in upslope soils, where Ni-bearing amorphous Fe-oxides were abundant and total organic carbon higher and sensibly lower downslope on the Vertisols: NiDTPA varied from 285 mg kg?1 in the surface of soil I (upslope) to 95.9 mg kg?1 in the surface of Fluvic Cambisols. Concentration of Ni in Alyssum murale shoots varied from 0.7 % (Hypereutric Cambisols) to 1.4 % (Hypereutric Vertisol). Amazingly, Ni uptake by A. murale was not correlated to NiDTPA, suggesting the existence of specific edaphic conditions that affect the ecophysiology of A. murale upslope.  相似文献   

12.
Impact of thermal discharge from a coastal power station (Madras Atomic Power Station, southeast coast of India) on the spatial variability of Donax cuneatus abundance was assessed to determine the impact boundary. Totally, 20 sites were selected both on south and north side in increasing spatial scale from mixing zone, 12 locations were selected toward south side at a distance from 0 (near mixing point) to 2,000 m and eight location were selected toward north from the effluent mixing zone. Mean water temperature along the coast ranged from 29.1 ±0.15°C to 31.2 ± 0.15°C. Total organic carbon content in the sediment ranged from 0.27% to 0.70%. D. cuneatus population on the swash zone was ranged between 1.3 ± 1.5 and 88.3 ± 9.6 m???2. Meager population of wedge clam was observed up to 100 m (S100) south from mixing point and abundance gradually increased in different spatial scale. Comparatively high abundance was observed from S400 and reached maximum at S1000 (64.0 ± 3.6 m???2). Similar pattern was observed on north side too but less abundance was observed only up to 80 m (N80). Maximum abundance was observed at control location C3-N500 (88.3 ± 9.6 m???2). Forty meters on either side of discharge point was highly impacted, 80 to 100 m toward plume flow (south) was moderately impacted, and 80 m north of mixing point also witnessed moderate impact. After 100 m (N100), north was not affected by effluents, whereas between 100 and 400 m, south was influenced slightly. Multivariate clustering pattern on the environmental variables of all sampling locations and population trend of D. cuneatus at those stations showed similarity. Present investigation unambiguously showed that the abundance pattern of D. cuneatus on the sandy beach of east coast of Kalpakkam is not governed by single major factor but due to the result of multiple interacting factors. The population size of the wedge clam with reference to the effect of power plant effluents and other features of habitats of the beach ecosystem are also discussed.  相似文献   

13.
Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha?1 and 2.79 to 4.92 m2 ha?1, respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson’s index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha?1, respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between themselves in terms of basal area (BA). The total shrub production was 1.59–3.53 t ha?1 year?1 while the C sequestration potential of 0.71–1.57 t ha?1 year?1 under different fire regimes. Shrub community in the medium fire zone reflected higher productivity and higher C sequestration in comparison to other fire zone. Among the different plant parts, the biomass accumulation ratio was highest in the root of shrub community among various fire regimes. Screening of species for restoration and different land-use pattern on the basis of biomass accumulation and carbon sequestering potential would be an effective strategy for decision-making in sustainable forest management.  相似文献   

14.
Nansi Lake is an important storage lake in the east route of the South-to-North Water Diversion Project in China, about which there has been serious concern regarding the water quality. In this study, the phytoplankton taxonomic composition, abundance, temporal variations, spatial distribution, and diversity were studied based on a monthly sampling campaign from five sampling stations between January 2010 and December 2010. A total of 159 species (8 phyla, 79 genera), including 74 species of Chlorophyta, 36 species of Bacillariophyta, 19 species of Cyanophyta (including 2 water bloom causative species), 21 species of Euglenophyta, 3 species of Cryptophyta, 5 species of Xanthophyta, 2 species of Pyrrophyta, and 2 species of Chrysophyta, were identified. Average phytoplankton diversity index and evenness values were 4.33 and 0.81, respectively, revealing high biodiversity of phytoplankton community. The phytoplankton abundance averaged at 9.51?×?106 cells L?1 and was much higher than previous investigations carried out in 1983–1984. The dominant species were Bacillariophyta, Chlorophyta in winter and spring, and Chlorophyta and Cyanophyta in summer and atutumn. There were 14 predominant species including Chlorella vulgaris, Cyclotella stelligera, Pseudanabaena limnetica, and Chroomonas acuta. Phytoplankton community structure and environmental variable changed substantially over the survey period. Redundancy Analysis was used to analyze the relationship between them. Temperature was considered to be the key factor driving the change in phytoplankton community composition in Nansi Lake during the 2010 study period.  相似文献   

15.
Phytoplankton species distribution and composition were determined by using microscopy and pigment ratios in the Kongsfjorden during early autumn 2012. Variation in sea surface temperature (SST) was minimal and matched well with satellite-derived SST. Nutrients were generally limited. Surface phytoplankton abundance ranged from 0.21?×?103 to 10.28?×?103 cells L?1. Phytoplankton abundance decreased with depth and did not show any significant correlation with chlorophyll a (chl a). Column-integrated phytoplankton cell counts (PCC) ranged from 94.3?×?106 cells m?2 (Kf4) to 13.7?×?106 cells m?2 (Kf5), while chl a was lowest at inner part of the fjord (6.3 mg m?2) and highest towards the mouth (24.83 mg m?2). Biomass from prymnesiophytes and raphidophytes dominated at surface and 10 m, respectively. The contribution of Bacillariophyceae to biomass was low. Generally, heterotrophic dinoflagellates were great in abundance (12.82 %) and ubiquitous in nature and were major contributors to biomass. Various chl pigments (chl b, chl c, phaeopigments (phaeo)) were measured to obtain pigment/chl a ratios to ascertain phytoplankton composition. Phaeo were observed only in inner fjord. Chl b:a ratios and microscopic observations indicated dominance of Chlorophyceae at greater depths than surface. Furthermore, microscopic observations confirmed dominance of chl c containing algae throughout the fjord. The study indicates that pigment ratios can be used as a tool for preliminary identification of major phytoplankton groups. However, under the presence of a large number of heterotrophic dinoflagellates such as Gymnodinium sp. and Gyrodinium sp., pigment signatures need to be supplemented by microscopic observations.  相似文献   

16.
There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 μg g?1 soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20?>?Zn 10?>?Cu 20?>?Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α?=?0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p?<?0.0001, and high F statistics). Principal component analysis (PCA) revealed that PC1 (metal concentration) rendered 76.06 % of the total variance, while 18.17 % of variance accounted by second component (MHC). Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.  相似文献   

17.
Environmental and biological reef monitoring was conducted in Almirante Bay (Bahía Almirante) in Bocas del Toro, Panama, to assess impacts from anthropogenic developments. An integrated monitoring investigated how seasonal temperature stress, turbidity, eutrophication and physical impacts threatened reef health and biodiversity throughout the region. Environmental parameters such as total suspended solids [TSS], carbon isotopes (δ13C), C/N ratios, chlorophyll a, irradiance, secchi depth, size fractions of the sediments and isotope composition of dissolved inorganic carbon [DIC] of the water were measured throughout the years 2010 and 2011 and were analysed in order to identify different impact sources. Compared to data from Collin et al. (Smithsonian Contributions to the Marine Sciences 38:324–334, 2009) chlorophyll a has doubled at sites close to the city and the port Almirante (from 0.46–0.49 to 0.78–0.97 μg l?1) and suspension load increased, visible by a decrease in secchi depth values. Visibility decreased from 9-13 m down to 4 m at the bay inlet Boca del Drago, which is strongly exposed to river run off and dredging for the shipping traffic. Eutrophication and turbidity levels seemed to be the determining factor for the loss of hard coral diversity, most significant at chlorophyll a levels higher than 0.5 μg l?1 and TSS levels higher than 4.7 mg l?1. Hard coral cover within the bay has also declined, at some sites down to <10 % with extremely low diversities (7 hard coral species). The hard coral species Porites furcata dominated the reefs in highly impacted areas and showed a strong recovery after bleaching and a higher tolerance to turbidity and eutrophication compared to other hard coral species in the bay. Serious overfishing was detected in the region by a lack of adult and carnivorous fish species, such as grunts, snappers and groupers. Study sites less impacted by anthropogenic activities and/or those with local protection showed a higher hard coral cover and fish abundance; however, an overall loss of hard coral diversity was observed.  相似文献   

18.
Changes in the phytoplankton biomass (chlorophyll a), production rate, and species composition were studied over two seasons using the time series measurements in the northern limb of the Cochin estuary in relation to the prevailing hydrological conditions. The present study showed the significant seasonal variation in water temperature (F = 69.4, P < 0.01), salinity (F = 341.93, P < 0.01), dissolved inorganic phosphorous (F = 17.71, P < 0.01), and silica (F = 898.1, P < 0.01) compared to nitrogen (F = 1.646, P > 0.05). The uneven input of ammonia (3.4–224.8 μM) from upstream (Periyar River) leads to the inconsistency in the N/P ratio (range 6.8–262). A distinct seasonality was observed in Si/N (F = 382.9, P < 0.01) and Si/P (F = 290.3, P < 0.01) ratios compared to the N/P ratio (F = 1.646, P > 0.05). The substantial increase in chlorophyll a (average, 34.8 ± 10 mg m???3) and primary production (average, 1,304 ± 694 mg C m???3 day???1) indicated the mesotrophic condition of the study area during the premonsoon (PRM) and it was attributed to the large increase in the population of nanoplankton (size < 20 μ ) such as Skeletonema costatum, Thalassiosira subtilis, Nitzschia closterium, and Navicula directa. In contrast, during the post monsoon (PM), low chlorophyll a concentration (average, 9.3 ± 9.2 mg m???3) and primary production (average, 124 ± 219 mg C m???3 day???1) showed heterotrophic condition. It can be stated that favorable environmental conditions (optimum nutrients and light intensity) prevailing during the PRM have enhanced the abundance of the nanoplankton community in the estuary, whereas during the PM, the light limitation due to high turbidity can reduce the nanoplankton growth and abundance, even though high nutrient level exists.  相似文献   

19.
Soil and air samples of seven different localities around Hamitabat Thermic Power Plant, 10 km far away from Luleburgaz/Kirklareli (Turkey), were taken between the years 2003 and 2004 with seasonal intervals. The samples were brought to the laboratory and their microfungal identifications were done. From the air samples, 737 microfungi colonies were isolated comprising 26 species belonging to eight genera. From soil samples, 170.6 × 104 colony-forming unit (CFU)/g was isolated from 33 species belonging to 16 genera. The most isolated genus from air samples was Alternaria (324 CFU, 43.96%), followed by Cladosporium (208 CFU, 25.52%) and Phoma (44 CFU, 5.40%). Penicillium was the most isolated genus from the soil samples with a value of 560,000 CFU/g (32.8%), followed by Fusarium (226,000 CFU/g, 13.12%) and Aspergillus (154,000 CFU/g, 9.03%). Among these species, Alternaria citri and Alternaria alternata are the most abundant species in air with 164 and 107 CFU, respectively, whereas Fusarium graminearum and Penicillium citrinum are the most abundant species in soil with CFU per gram values of 17.8 × 104 and 1.3 × 105. Correlation analysis was applied to determine whether or not there was a relationship between colony number of isolated fungal genera and meteorological factors. Some parameters of soil samples’ incontent during the research period were calculated using a computer analysis program. From the air samples, a positive correlation was found between relative humidity and Alternaria colonial counts and Cladosporium spore counts (r?=?0.912 and r?=?1.000, respectively). Similarly, with the analysis of soil samples, a positive correlation between colonial counts of Alternaria and soil pH and a positive correlation between colonial counts of Aspergillus and Penicillium and salt percentage concentration of soil were found.  相似文献   

20.
Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P?+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), total Kjeldahl nitrogen (TKN), phosphate (PO4 3?), sulfate (SO4 2?), ferrous (Fe2+), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号