首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
石油勘探开发中的石油类污染及其监测分析技术   总被引:15,自引:2,他引:15  
首先介绍了陆地石油勘探开发过程对环境的影响 ,并总结出这种影响集中体现在油田附近水体和土壤受到石油类的污染。然后针对石油类监测分析方法展开探讨 ,并分水中石油类和土壤中石油类两部分 ,把我国和美国的监测方法进行了对比研究。在此基础上提出了在进行油田环境现状评价和石油类污染物环境变迁规律研究中使用石油类分析方法的建议  相似文献   

2.
结合重点行业企业用地调查工作实践,分析了我国场地调查土壤中污染物监测分析方法标准现状和存在的问题,包括缺少一些行业特征污染物、重金属形态分析和现场快速检测技术标准,以及部分方法的可比性和适用性较差等,提出了结合污染场地环境调查土壤基质的特点及风险评估与治理修复的需求,加快制定缺失的行业特征污染物和重金属形态分析方法标准,及时修订和完善现行分析方法体系,增强标准的可比性、适用性和可操作性等建议.  相似文献   

3.
重点介绍了用"直接法"测定土壤中总萃取物、石油类、动植物油(以下称"三油")含量及其准确度的一整套方法。分析比对不同材料和实验条件的选择,从而为环境监测行业制定统一的"三油"分析方法创造了条件。  相似文献   

4.
1. 前言 关于土壤中污染元素的分析方法,渡边已把1975~1981年期间的有关报导进行过综述,本文就1982~1987年间的进展作一概述。 1985年日本土壤肥料会志已概略刊登了土壤中环境污染元素的分析方法。此外,关于个别分析方法的进展及解说,在山县登的“土壤底质互相核对”,冈本的“土壤底质分析”中都有详细论述。山崎还报导了“土壤中可给态成分分析”,渡边、小山就“土壤中微量元素的提取方法”进行了总结。在日本土壤肥料学  相似文献   

5.
石油污染场地土壤修复技术及工程化应用   总被引:2,自引:0,他引:2  
在分析当前我国土壤受石油污染的状况基础上,介绍目前修复石油污染场地土壤的技术,包括物理修复、化学修复和生物修复等.并对各种技术的修复原理、研究进展、优缺点及其发展趋势进行了综述,结合我国的研究现状与工作基础对该领域今后的研究方向与重点进行了展望.  相似文献   

6.
关于中国土壤环境监测分析方法标准的思考与建议   总被引:2,自引:0,他引:2  
研究了中国土壤环境监测分析方法标准发展历程及现状。根据现行土壤环境监测分析方法标准的类型、数量和污染物控制项目,以及中国土壤环境监测分析方法标准的特点,分析了中国土壤环境监测分析方法标准存在的问题和不足。结合当前土壤环境管理需求,提出了完善中国土壤环境监测分析方法标准的建议:加快标准制修订,合理增加污染物项目的控制种类和检测方式;加强不同标准方法之间的可比性研究,使标准更具实用性和指导性;加大土壤监测技术基础性研究,借鉴国外先进经验,为标准制修订工作提供有力支撑。  相似文献   

7.
石油烃污染场地已经成为国内外重点关注的工业污染场地类型之一。国内基于人体健康风险的污染场地管理模式及分层次评估方法已经展现雏形,为风险管理者提供了基于人体健康的土壤石油烃风险筛选值和管制值,也为污染场地的防治与修复工作提供了决策支持。在前人研究的基础上,梳理了国内土壤环境质量标准体系的建立与发展历程,分析了石油烃类污染物检测方法的现状与未来发展趋势,并着重对比与分析了各标准制订的石油烃及其指示化合物的风险评估筛选值。目前面临的关键问题:①完善石油烃监测指标体系及分析方法是精准获得风险评估结果的前提。现有石油烃馏分指标划分较为宽泛,有必要参考国外先进标准体系,逐渐完善石油烃馏分指标划分及其配套的定量分析方法。②新颁布的国家建设用地土壤污染风险管控标准在前期场地调查中具有一定的普遍适用性,但是考虑到地域建筑物参数、人群暴露参数等的差异性,在后期场地调查中还需要因地制宜地制定适合污染场地的具体修复目标值,并针对关键性参数作定量化解析。  相似文献   

8.
建立了荧光分光光度法测定土壤中石油类。方法检出限为3 mg/kg,实际土壤加标回收率为95.5%~108%,精密度(RSD,n=6)为2.4%~8.7%。实验结果表明,该方法准确可靠、灵敏度高、选择性好、操作简便,与红外分光光度法有较好的可比性,满足土壤中石油类分析要求。  相似文献   

9.
介绍了土壤石油污染的成因,危害,通过表面活性剂溶液对石油污染土壤进行静态与动态解吸实验表明,表面活性剂淋洗法是去除土壤中石油类污染物的一种有效方法。  相似文献   

10.
针对目前土壤监测分析方法、质控要求不统一的现状,从空白试验、标准曲线、精密度、准确度等方面,分析了在实际应用中存在的问题,提出构建统一的土壤环境监测质量管理体系和评估技术体系的建议,从而实现土壤环境质量监测分析活动的全要素溯源传递、全过程质量控制及技术评估,保障土壤监测数据的科学性、准确性和可比性,与新的管理要求相匹配。  相似文献   

11.
Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization results of this set of 21 samples. In general, the presence of petroleum-characteristic alkylated PAH homologues and biomarkers can be used as unambiguous indicators of the contamination of oil and petroleum product hydrocarbons; while the absence of petroleum-characteristic alkylated PAH homologues and biomarkers and the presence of abundant BOC can be used as unambiguous indicators of the predominance of natural organic compounds in soil samples.  相似文献   

12.
Despite the widespread and successful use of luminescence-based bioassays in water testing, their applications to soils and sediments is less proven. In part this is because such bioassays have mainly been carried out in an aqueous-based medium and, as such, favour contaminants that are readily water-soluble. In this study, aqueous solutions and soils contaminated with heavy metals (HM), polar organic contaminants and hydrophobic organic contaminants (HOCs) were tested using a range of luminescence-based bioassays (Vibrio fischeri, Escherichia coli HB101 pUCD607 and Pseudomonas fluorescens 10586r pUCD607). For the first two chemical groups, the assays were highly reproducible when optimised extraction procedures were employed but for HOCs the bioassay response was poor. Quantitative structure-activity relationships (QSARs) obtained from aqueous solutions had a linear response although correlation for the chemicals tested using bacterial bioassays was significantly less sensitive than that of sublethal tests for Tetrahymena pyriformis. Bacterial and Dendrobaena veneta bioassay responses to extracts from HM amended soils showed that a clear relationship between trophic levels could be obtained. There is no doubt that the wide range of bioluminescent-based bioassays offers complementary applications to traditional testing techniques but there is a significant need to justify and optimise the extraction protocol prior to application.  相似文献   

13.
Alluvial soils may represent important sinks of contaminants as a result of the deposition of contaminated sediments along the river by overbank flooding or after dredging. Because of the erosion of alluvial deposits or the release of contaminants from sediments, alluvial soils can also be a source of contamination. In this paper, a risk assessment for contaminated (alluvial) soils is presented. The approach, mainly based on physico-chemical soil characteristics, single extractions and leaching tests, is illustrated by means of a case study from four Belgian catchments. The extractions and leaching tests that were used have been validated by European testing programs and can provide valuable information for classifying the potential environmental risks of soils. Irrespective of the location, pH, organic carbon content and 'mobilisable' metal concentrations were the most important factors explaining 'mobile' metal concentrations in the alluvial soils. Additionally, the data of the physico-chemical soil characterization, extractions and leaching tests were combined with local and regional factors to classify the alluvial soils in different categories according to their actual and potential risk for the environment.  相似文献   

14.
During the past two decades, significant efforts have been made to study contaminant transport in the presence of colloids. Several researchers reported that colloidal particles could enhance the migration of contaminants in groundwater by reducing retardation factor. When the colloidal particles are present in the aquifer, the subsurface system can be considered as a three-phase system with two solid phases and an aqueous phase. The interaction between contaminants, colloids, and solid matrix should be considered in assessing the fate and transport of the contaminant in the groundwater flow system. In this study, a one-dimensional numerical model is developed by employing a fully implicit finite difference method. This model is based on mass balance equations and mass partition mechanisms between the carriers and solid matrix, as well as between the carriers and contaminants in a saturated homogeneous porous medium. This phenomenon is presented by two approaches: equilibrium approach and fully kinetic first-order approach. The formulation of the model can be simplified by employing equilibrium partitioning of particles. However, contaminant transport can be predicted more accurately in realistic situations by kinetic modeling. To test the sensitivity of the model, the effect of the various chemical and physical coefficients on the migration of contaminant was investigated. The results of numerical modeling matched favorably with experimental data reported in the literature.  相似文献   

15.
The environmental impact of metallic contaminants in soils and sediments is dependent both on the chemical speciation of the metal and the response of the matrix to biological and physicochemical conditions. These factors are responsible for the mobilisation of the metal from the solid into the aquatic phase and hence transport within the immediate vicinity, impacting on the rate of dispersal, dilution, uptake and transfer into living systems. The impact of changing environmental conditions on the contaminant inventory can be to enhance or moderate these phenomena, with subsequent consequences for the broader risk assessment of the contaminants. Remediation of metallic contaminants can only be brought about by their removal from the site or by establishing conditions which favour their retention in the solid phase. A wide range of in situ and ex situ approaches are available and a summary overview is presented. The examples show assessment at both the field and laboratory scale and demonstrate an equally wide range of success in achieving remediation targets. This can be attributed to limitations in ensuring that the desired conditions for the initial removal or immobilisation process are met and maintained over a suitable period of time. Three areas are reviewed which include: the transport and release of metallic contaminants in estuarine sediments and the assessment of their potential to impact on biota; terrestrial contamination systems involving the release of chromium from waste ore contaminating urban environments; the response of metal-contaminated wastes to changing environmental conditions and the impact of natural bioremediation. The focus of the discussion is to highlight the generation of reliable speciation information and the problems associated with impact and risk assessment. Particular issues of concern are the laboratory to field scale evaluation of contaminant behaviour and the approach used to assess the reliability of remediation options. In conclusion, part of a recent initiative in risk assessment and the development of pilot scale experimental systems to study long-term behaviour are addressed as future goals to fill gaps in current research.  相似文献   

16.
Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.  相似文献   

17.
Soils in urban parks are useful tracers of diffuse contamination and could represent a potential health risk for citizens. Soils in the parks of Torino, Italy, were sampled and analysed for a broad range of organic and inorganic contaminants. Concentrations of potentially toxic elements, PAHs, PCBs and polychlorinated dibenzo-p-dioxins and dibenzofurans were often above national legislation limits, and higher than surrounding rural areas or than other cities. Mean concentrations were 233 mg kg(-1) for Cr, 164 mg kg(-1) for Ni, 124 mg kg(-1) for Pb and 170 mg kg(-1) for Zn. Other inorganic contaminants such as Cd, As, and Hg showed high concentrations in some soils. Organic contaminants were also found to be enriched in the sampled parks (e.g. maximum concentrations of PCDDs/DFs and PCBs were 12.6 ng kg(-1) and 0.310 mg kg(-1), respectively). Data from this study reveal an important enrichment of parks for some contaminants, reflecting the intensity of phenomena of diffuse contamination. Historical parks presented the highest degree of contamination, suggesting that the age of soils rather than their proximity to sources of emissions is a key factor in determining soil contamination. Data obtained in this study could be of help in the investigation and remediation practices of urban contaminated sites within large cities.  相似文献   

18.
The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes.  相似文献   

19.
Soils have an important role to play in supplying and receiving contaminants from the atmosphere, and in the global cycling of certain persistent organic pollutants (POPs). A microcosm study was conducted, in which some aspects of air-soil exchange likely to be important for the global cycling of POPs were simulated. HCB and PCBs were introduced into a sealed chamber, which contained soils of varying organic matter content, and in which soil mixing was a variable. Uptake of these compounds on to the soils was monitored over time. Subsequently, the primary chemical source was removed and further changes in the residues retained on the soils were monitored. The rates of uptake onto the different soil treatments are compared and the influence of the soil organic matter content and mixing evaluated. The implications for the global cycling of POPs are discussed.  相似文献   

20.
A sediment sample from the intertidal mudflats of the Tagus estuary was prepared, homogenised and distributed globally to laboratories as the IAEA-408 intercomparison material for the analyses of organochlorinated pesticides, PCBs and petroleum hydrocarbons (PHs). A total of 48 laboratories from 36 countries reported their results. The data from participants show that there still remain some difficulties with the accurate determination of organic contaminants such as pesticides and polycyclic aromatic hydrocarbons (PAHs). More consistent interlaboratory results were obtained for PCBs congeners. The final results of this intercomparison exercise enable individual participants to assess their performance and, where necessary, to introduce appropriate modifications in their analytical procedures. Furthermore, as a series of statistical criteria was fulfilled for a number of compounds, the sample IAEA-408 can now be used as a reference material for quality control in the determination of some persistant organic pollutants (POPs) in marine sediment samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号