首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 140 毫秒

1.  基于卫星和地面观测的2013年以来我国臭氧时空分布及变化特征  
   张倩倩  张兴赢《环境科学》,2019年第40卷第3期
   采用卫星和地面观测臭氧(O3)浓度,分析2013年以来我国O3的时空分布和年际变化特征.卫星观测对流层O3总量和地面观测O3浓度分布相互印证,我国高浓度O3主要分布在东部人口密集、经济发达的区域,并且呈现夏季高、冬季低的季节分布趋势.4个重点关注城市(北京、上海、广州、成都)O3日变化均呈现单峰分布,最高值在每日15:00~16:00.统计分析发现,4个城市除上海市之外,其他3个城市O3浓度在周末和工作日没有显著差别,表明O3的"周末效应"减弱.2013年4月~2018年6月,我国地面观测O3浓度呈现明显上升趋势.2014~2017年,北京、上海和成都市近地面O3浓度分别以2.36、3.3和3.6 μg·(m3·a)-1的速度显著上升.4个城市2014~2017年O3超标天数占比分别为17.2%(北京)、10.7%(上海)、8.8%(广州)和11.2%(成都),北京市O3超标天数最多、超标期间O3浓度最高,O3污染最为严重.    

2.  2013—2016年珠海地区臭氧浓度特征及其与气象因素的关系  
   周学思  廖志恒  王萌  陈静林  董娟  赵新锋  范绍佳《环境科学学报》,2019年第39卷第1期
   利用珠海地区两个代表性环境空气质量国控站(吉大站、斗门站)2013—2016年连续4年的逐时臭氧(O3)浓度监测资料和离两个国控站最近的基本气象站(珠海气象站、斗门气象站)同期逐时气象资料,综合应用统计分析、个例剖析、HYSPLIT后向轨迹聚类分析和潜在源贡献因子分析(PSCF)方法,研究了珠海地区臭氧浓度特征及其与气象因素的关系.结果表明:①干季珠海市O3浓度最高且超标天数最多,高温低湿条件有利于O3的形成;②位于内陆的斗门站O3污染浓度、污染频率明显高于位于沿海的吉大站;③风场对珠海地区O3浓度分布有重要影响,东北风或偏北风风速为3~4 m·s-1时下风向珠海地区O3浓度最高;④10月O3重污染个例剖析表明,区域输送对珠海地区O3污染有重要影响.HYSPLIT后向轨迹聚类分析表明,影响珠海地区O3污染的气团来源中受广东中东部气流影响时污染最重,与潜在源贡献因子分析(PSCF)表明的该污染个例的污染潜在源区主要为广东中东部的东莞、广州增城、河源及以北地区的结论一致.    

3.  石家庄市臭氧和二氧化氮的时空演替特征及来源解析  
   王帅  聂赛赛  冯亚平  崔建升  陈静  刘大喜  石文雅《环境科学》,2021年第42卷第6期
   为研究石家庄市域臭氧(O3)和NO2的时空演替格局及污染来源,取2014~2017年市域18个区县(市)的O3、NO2和气象要素资料(温度、湿度、风速、降水、日照),及2017年夏季挥发性有机物(VOCs)数据,采用网络分析(network analysis)、空间插值(IDW)、Moran模型及后向轨迹方法,对市域内区县O3和NO2的空间联系、演替格局、空间影响因素及污染来源进行了分析.结果表明:①2014~2017年市域O3浓度呈上升趋势,市区O3月度变动呈单峰型态势,5~9月是O3污染(O3≥160 μg·m-3)的典型时期(TPOP),TPOP的气象特征为高温低湿弱风强光照,NO2在TPOP内的负相关性显著;②主城区O3浓度在2015年后呈逐年显著上升,主城区的污染物类型从NO2(2014~2016年)转为VOCs(2016~2017年),而县域2014~2017年均属VOCs控制区;③市域O3空间影响因子主要集中于工业、农业、经济和人口这4个维度(P≤0.05).第二产业对O3污染的高值中心出现在主城区和栾城区,与区域内工业生产活动有关;④VOCs夏季监测期间的轨迹聚类出3个来源方向,即A(东-东北,26.67%)、B(西北-西,43.33%)及C(东南-南,30%),轨迹A和C是VOCs传输的主要方向(东-东南).    

4.  2016年中国城市臭氧浓度的时空变化规律  被引次数:3
   李霄阳  李思杰  刘鹏飞  孔云峰  宋宏权《环境科学学报》,2018年第38卷第4期
   随着城市化进程的加快和机动车保有量的急剧增加,导致我国很多地区臭氧(O3)前体物(挥发性有机物和氮氧化物)排放量显著增加,臭氧污染现象日益突出.臭氧污染对人体健康、植被生长、生态环境等具有重要影响,已成为学术界研究的热点.为揭示全国尺度近地面臭氧的时空变化规律,本文基于2016年中国364个城市的监测数据分析了中国城市O3浓度的时空变化特征,并采用Global Moran''s I和Getis-Ord Gi*指数,揭示了2016年中国城市O3污染的空间集聚和冷热点区域的时空特征.结果表明,在全国尺度上,2016年中国城市年均O3浓度为100.2 μg·m-3,北方城市和南方城市O3浓度分别具有显著的倒"V"和"M"型月变化规律,且呈现夏季高、春秋季居中、冬季最低的特征;中国城市O3浓度具有显著的空间分异规律,中部和东部是O3污染的高发区,西部地区和黑龙江省的O3污染处于较低水平;中国城市O3浓度具有显著的集聚性特征,且呈现1-5月由南向北而6-12月由北向南扩展的年周期循环特征,热点地区主要集中在华北、华中和华东地区.    

5.  珠江三角洲大气光化学氧化剂(Ox)与PM2.5复合超标污染特征及气象影响因素  
   颜丰华  陈伟华  常鸣  王伟文  刘永林  钟部卿  毛敬英  杨土士  王雪梅  刘婵芳《环境科学》,2021年第42卷第4期
   基于粤港澳珠江三角洲区域空气监测网络12个监测子站的大气污染物数据,梳理2013~2017年大气光化学氧化剂Ox(NO2+O3)与PM2.5质量浓度的变化趋势.Ox+PM2.5复合超标污染定义为NO2和PM2.5质量浓度日平均值以及O3浓度日最大8 h平均值(O3 MDA8)同时超过二级浓度限值,分析了不同类型站点复合超标污染的时空分布特征以及气象因素影响.结果表明,2013~2017年珠三角PM2.5年均质量浓度由(44±7)μg·m-3下降至(32±4)μg·m-3,实现PM2.5连续3 a达标.Ox年均质量浓度由2013年(127±14)μg·m-3下降至2016年(114±12)μg·m-3,2017年反弹至(129±13)μg·m-3,O3浓度上升明显(10 μg·m-3).以O3为首要污染物的污染过程占比由2013年33%增多至2017年78%,多个城市同时发生污染的区域特征明显.研究时段内Ox+PM2.5复合超标污染事件共发生60次,主要在城区站点(78%)和郊区站点(22%).秋季发生复合超标污染天数最多(52%),是因为强太阳辐射有利于臭氧生成,大气氧化性增加,进而促进了PM2.5二次生成.造成珠三角复合超标污染的天气形势主要为高压出海型(43%)、高压控制型(30%)和热带低压型(27%).就具体气象因素而言,气温在20~25℃且相对湿度在60%~75%的范围内时,复合超标污染事件发生占比最高(22%).在O3重污染过程中,夜间高湿和低风速使得NO2和PM2.5浓度显著上升,日间高温加剧了复合超标污染.    

6.  基于土地利用回归模型的北京市2013—2019年大气污染时空变化分析  
   冯春莉  李润奎《环境科学学报》,2021年第41卷第4期
   在近年来大力控制大气污染的背景下,通过历史观测数据分析污染物的时空变化特征,有助于总结以往控制的成效,并为制定下一阶段措施提供科学依据.本研究基于北京市大气环境质量监测站点2013—2019年数据,分析了6种常规大气污染物(PM2.5、NO2、O3、PM10、SO2、CO)的时间变化趋势,并构建了2013和2019年PM2.5、NO2和O3 3种主要污染物的土地利用回归模型(Land use regression model, LUR),对它们详细的空间分布及变化特征进行了分析.结果表明,污染物浓度在过去7年中发生了重大变化,除O3增长,其余5种污染物下降明显.不同城区间的差异在迅速缩小,污染物浓度在空间上趋于均匀.PM2.5呈明显的南高北低,城区NO2浓度显著高于郊区和山区,O3在主城区尤其是道路附近浓度较低.约50%的区域PM2.5下降30 μg·m-3以上,约40%的区域NO2下降幅度为5~15 μg·m-3,道路附近O3升幅在20 μg·m-3以内.研究结果揭示出北京市及其周边地区大气污染治理近年来取得了卓有成效的成绩,但同时也面临着O3浓度升高的新挑战.    

7.  G20峰会期间长三角区域臭氧变化及管控效果评估  
   周德荣  田旭东  蔡哲  王晓元  李颖  刘祎  江飞《中国环境监测》,2020年第36卷第2期
   为了研究 2016年二十国集团领导人峰会(G20峰会)期间长三角区域臭氧(O3)变化特征,评估管控措施对O3浓度的影响,利用2016年8月10日至9月20日杭州及周边地区的空气质量监测数据、气象数据以及排放清单数据,分析了O3和NO2浓度及气象条件的时空分布特征,研究了不同管控区域不同保障时期O3浓度的时空变化和O3敏感控制区的改变。结果表明:峰会保障期间对于一次排放污染物和细颗粒物的管控措施效果明显,但核心区的O3质量浓度高于严控区和管控区,分别高出11.2、9.2 μg/m3。日间的NOx管控导致O3日变化幅度增高接近50 μg/m3。在峰会保障期间,卫星数据和站点观测结果显示核心区O3由VOCs控制区转为NOx-VOCs协同控制区,整个长三角区域的O3生成对于NOx排放量更为敏感。管控措施越强,核心区的O3生成对于NOx排放越敏感,且O3浓度与NOx浓度的相关性越强。对NOx和VOCs的协同控制降低排放,是关系O3浓度管控的一项重要工作。    

8.  2013—2016年74城市臭氧浓度变化特征  被引次数:4
   孟晓艳  宫正宇  叶春霞  王帅  孙浩  张霞《中国环境监测》,2017年第33卷第5期
   利用2013—2016年74城市臭氧(O3)监测数据,综合探讨了全国74城市O3浓度时空变化特征、变化趋势。结果表明:2013—2016年,74城市O3-8 h各百分位浓度总体呈上升趋势,且百分位较高区间O3浓度逐年上升速率越快,O3-8 h第95百分位浓度年增长5.3 μg/m3,其次是第90百分位;O3区域性污染特征明显,京津冀及周边、长三角、珠三角O3污染问题突出;74城市O3浓度超标天数年增长3 d/城市,O3污染呈明显日、季节变化特征,午后14:00—17:00达到小时浓度峰值,超标日主要集中于5—10月;O3对环境空气质量综合指数贡献率逐年增加,北京、上海和广州O3贡献率年增长分别为1.9%、1.1%和0.8%。    

9.  北京市2014~2020年PM2.5和O3时空分布与健康效应评估  
   陈菁  彭金龙  徐彦森《环境科学》,2021年第42卷第9期
   细颗粒物(PM2.5)和臭氧(O3)是我国的主要大气污染物,严重危害人群健康.北京市自2013年以来大力开展大气污染治理工作,现已取得显著成效.通过分析2014~2020年北京市34个大气环境监测站的PM2.5和O3浓度变化特征并评估大气污染防治的健康效应,对推进大气污染防治具有重要意义.结果表明,2014年北京市PM2.5年均值和4~9月平均O3日最大小时(O3_max)值分别为92.0 μg·m-3和81.9 nmol·mol-1.2014~2020年PM2.5平均每年降低7.5 μg·m-3,但是O3_max持续偏高.在季节尺度,冬季的12月和1月PM2.5浓度最高,夏季的8月浓度最低.相反地,O3_max在每年6月浓度最高.PM2.5浓度日变化规律为,夜间22:00至次日00:00最高,14:00~16:00最低.而O3浓度在07:00最低,随后逐步升高并在午后达到最高.在空间分布上,PM2.5在2014和2019年都呈现南高北低的趋势,O3_max在全市范围内均较高,仅在道路区域偏低.大气污染对人群健康影响的评估结果表明,2014年北京市与PM2.5相关的心血管和呼吸道疾病超额死亡人数分别为1580人和821人,与O3相关的呼吸道疾病超额死亡人数为2180人.2019年与PM2.5相关的超额死亡人数仅为2014年的50%,而与O3相关的超额死亡人数与2014年持平.北京市细颗粒物治理成效显著,但是O3污染问题凸显,O3已经成为危害北京市居民健康的首要大气污染物.未来需要加强PM2.5和O3协同治理.    

10.  中国暖季近地面臭氧浓度空间格局演变及主要气象驱动因素  
   何超  慕航  杨璐  王丹璐  邸彦峰  叶志祥  易嘉慧  柯碧钦  田雅  洪松《环境科学》,2021年第42卷第9期
   中国的近地面臭氧(O3)浓度在2015~2018年间持续升高,已成为仅次于颗粒物的重要大气污染物.基于中国337个城市2015~2018年暖季(4~9月)的实时O3浓度数据和气象数据,利用趋势分析、空间自相关、热点分析和多尺度地理加权回归(MGWR),研究了2015~2018年中国暖季地表O3浓度的空间演变格局,探讨了气象因素对其驱动的空间差异性.结果表明:①中国暖季O3浓度整体呈显著升高趋势(P<0.05),平均升高速率为0.28 μg·(m3·a)-1,其中超过55%的城市O3浓度每年升高0.50 μg·m-3;②O3浓度存在明显的区域差异,高值区(平均浓度>60 μg·m-3)分布在华东、华北、华中和西北部分地区;低值区(平均浓度<20 μg·m-3)分布在华南和西南地区;③O3浓度变化趋势在空间上存在位于华东、华北、西北以及华中地区的热点区域和位于西南、华南(广西)以及东北地区的冷点区域;④气温是中国暖季O3变化的主要气象驱动因素,其对华北、西北和东北地区O3浓度的影响显著高于其他地区;除广西、云南和江西部分地区外,O3浓度与气温呈显著正相关;O3浓度在华南、华东和华中大部分地区与风速呈显著负相关,O3浓度在华北和东北部分地区与风速呈显著正相关;除辽宁、山东、河北、甘肃、广东及西南部分地区外,O3浓度与云层覆盖度呈显著负相关;除西北和西南部分地区外,O3浓度与降水呈显著负相关.    

11.  广州地区秋季不同站点类型地面臭氧变化特征与影响因子  
   高平  庄立跃  王龙  陈瑜萍  闫慧  沈劲  范丽雅  叶代启《环境科学》,2020年第41卷第8期
   近地面臭氧(O3)已成为广州市的主要空气污染物.由于受地形、气象条件和前体物排放差异的影响,同一个城市内不同地区臭氧的变化特征与影响因素也存在较大差异.基于2015年10月广州4个代表不同站点类型[城区:广州市监测站(GMC)、上风向郊区:花都师范(HNS)、下风向郊区:番禺中学(PMS)和山区:帽峰山森林公园(MFS)]的空气质量监测站数据,结合WRF模拟的气象数据,研究了各站点O3的变化特征、影响因素及敏感性.结果表明,4个站点的O3和NOx日变化分别呈现单、双峰分布特征(MFS站点NOx除外),GMC、HNS和MFS站点的O3峰值出现在周六,而PMS出现在周四.MFS的O3日均浓度最高(98.61 μg·m-3),GMC的O3日均浓度最低(44.83 μg·m-3).不同站点臭氧浓度超标的NOx拐点区间分别为:GMC:55~90 μg·m-3,PMS:30~60 μg·m-3,MFS:10~20 μg·m-3.O3增长率的温度(T)拐点区间分别为:GMC:28~30℃,HNS:26~28℃,PMS:24~26℃,MFS的拐点温度不明显;湿度(RH)拐点区间分别为:GMC 55%~65%,HNS和PMS 60%~70%,MFS 80%~85%.轻风类风速(WS:1.5~3.3m·s-1)与O3呈现正相关;当风向为西北风向时,PMS站点的O3浓度最高,其他风向下MFS的O3浓度最高.通过各影响因子与O3的多元线性拟合发现,影响各站点O3的主控因子是,GMC:WS和T;PMS和HNS:T和RH,MFS:RH和WS.各站点O3敏感性分别是,GMC和HNS为VOCs控制区,MFS为NOx控制区,PMS为协同控制区.    

12.  2010—2016年上海城区臭氧长时间序列变化特征初探  
   张小娟  李莉  王红丽  陶士康  朱书慧  陈勇航  王军  游振宇  Jeremy C. Avise《环境科学学报》,2019年第39卷第1期
   基于2010—2016年上海城区近地面大气臭氧(O3)的连续在线观测数据,研究了上海城区O3长时间序列变化规律和污染特征.结果表明,近7年来上海城区O3污染逐渐凸显,但总体以轻度污染为主,7—8月高温炎热季节以中度污染居多.城区O3-8 h(臭氧日最大8 h滑动平均)年均增速为3.81 μg·m-3·a-1,99%和95%分位值增速较快,分别为6.65和4.94 μg·m-3·a-1;25%、50%和75%分位值的增速在3.06~4.45 μg·m-3·a-1之间.春季O3浓度均值较高,年际变化小;夏季极值较高,且污染超标情况最为突出;秋季O3浓度次于春、夏季,冬季最低;夏、秋和冬季O3浓度总体呈上升态势.O3日变化呈"单峰型",最大值出现在13:00左右,且峰值逐年增加,污染持续时间变长,最小值出现在早晨7:00.城区O3"周末效应"逐渐减弱.基于KZ过滤器方法的数据分析结果表明,上海城区O3-8 h长期变化主要受O3-BF(O3-8 h的基准组分)影响;O3-SF(O3-8 h的天气影响组分)在5—9月对O3-8 h影响较大,其范围为-98.85~139.60 μg·m-3.    

13.  上海市大气挥发性有机物化学消耗与臭氧生成的关系  被引次数:11
   王红丽《环境科学》,2015年第36卷第9期
   本研究基于夏季上海3个不同功能站点臭氧(O3)及其前体物的观测结果,分析了上海不同地区O3及其前体物的污染特征及空间差异; 采用参数化的方法估算了VOCs的大气化学消耗水平. 结果表明,观测期间上海市区VOCs浓度约为20×10-9,高于西部郊区的17×10-9; 两个地区VOCs最大增量反应活性(以O3/VOCs计)的平均值比较接近,约为5.0 mol ·mol-1. 但是,市区VOCs的大气消耗水平(4.0×10-9)不足西部郊区VOCs消耗水平(8.3×10-9)的一半,这是西部郊区O3污染更重的重要原因; 东部沿海郊区O3浓度的变化主要是由于区域输送. 不同地区VOCs消耗水平与O3生成浓度的比值接近,说明不同地区VOCs消耗生成O3的效率接近; 烯烃和芳香烃是最主要的VOCs消耗物种,二者对VOCs消耗量的总贡献高达90%. VOCs的消耗水平在正午达到最大,夜间消耗水平最低,日分布曲线与O3生成的日变化曲线相似,但O3峰值出现时间略晚于VOCs消耗水平峰值出现的时间.    

14.  支持向量机回归在臭氧预报中的应用  
   苏筱倩  安俊琳  张玉欣  梁静舒  刘静达  王鑫《环境科学》,2019年第40卷第4期
   采用南京工业区2016年5月20日~8月15日这一高臭氧(O3)期的O3、O3前体物和常规气象资料数据,利用支持向量机回归(SVMr)方法分别预报O3的小时值、日最大值和最大8 h滑动平均值.结果表明,O3小时值预报的相关系数(R2)为0.84,平均绝对误差(MAE)和平均绝对百分误差(MAPE)分别为3.44×10-9和24.48,O3前期浓度、紫外B波段辐射(UVB)和NO2浓度是关键因子.O3日最大值预报的主要因子是NOx在07:00的浓度和UVB.预报O3 8 h时UVB和气温起重要作用.加入前体物项能够使O3的预报精度提升10%~28%.与多元线性回归方法相比,SVMr对O3浓度的预报有明显优势.    

15.  郑州市臭氧污染变化特征、气象影响及输送源分析  
   王旭东  尹沙沙  杨健  袁明浩  张瑞芹  李亚松  卢轩《环境科学》,2021年第42卷第2期
   基于环境空气质量和气象在线监测数据,研究了郑州市近地面臭氧(O3)污染的年际变化、空间差异及气象影响,并分析了O3传输路径和潜在源区.结果表明,2014~2018年郑州市近地面O3污染超标时间跨度增加,城区站点O3日最大8 h滑动平均值(MDA8)第90%分位呈显著上升趋势(P<0.05),增长速率为15.50 μg·(m3·a)-1;O3月变化呈"M"型,峰值出现在夏季;日变化呈单峰型,峰值出现在15:00~16:00,农村站点O3日峰值浓度(130.94 μg·m-3)最高;气温(T)>23℃、相对湿度(RH)<65%和风速(WS)为2.0~4.0 m·s-1及风向在东南和东北方向时城市站点易发生高浓度O3污染.各影响因子和O3浓度的多元线性回归分析表明,T和RH是城市和工业站点的主控因子,T和WS是城市交通和郊区站点的主控因子;不同季节后向轨迹聚类分析和O3潜在来源差异明显,春夏季大气传输路径以正南及东北方向近距离慢移速的轨迹为主,秋冬季以西北方向远距离快移速的轨迹为主;夏季高O3浓度主要受本地生成和河北、山东及安徽等地传输影响.    

16.  京津冀臭氧污染特征、气象影响及基于神经网络的预报效果评估  
   朱媛媛  刘冰  桂海林  李健军  汪巍《环境科学》,2022年第43卷第8期
   基于生态环境监测和气象观测数据,分析了2016~2020年京津冀13个城市臭氧(O3)浓度特征,讨论了O3污染高发月份日最高温度(Tmax)、日均地面气压(p)、日均地面相对湿度(RH)和日均地面风速(v)等气象要素对O3-8h浓度和O3-8h超标情况的影响规律,并采用AQI级别预报准确率、O3浓度范围预报准确率和O3级别预报准确率等方法,评估了基于神经网络的O3统计预报效果.结果表明,2016~2020年期间京津冀13城市ρ(O3-8h-90per)分别为157.4、177.2、177.3、190.6和175.6μg·m-3,区域臭氧浓度5a上升了11.6%,2016~2019年期间总体呈波动上升趋势,2020年环比下降;2020年与2016年相比,除北京、张家口和承德略有下降外,其他10个城市ρ(O3-8h-90per)上升了6~45.5μg·m-3.O3-8h月均值呈现"两头低,中间高"现象,ρ(O3-8h)在4~9月的月均值超过了100 μg·m-3,在6月最高,为158.10 μg·m-3.城市O3-8h超标率范围为8.6%~19.2%,97.8%的O3-8h超标情况发生在4~9月.区域尺度上O3-8h浓度与日最高温度相关性最强,当Tmax在25~28℃区间时,所有城市开始出现O3-8h超标.O3-8h浓度与日均地面气压呈负相关关系;当RH在60%以下时,大部分城市O3-8h浓度随相对湿度上升缓慢增长;当RH在61%~70%以上时,大部分城市O3-8h浓度随日均相对湿度上升而下降.O3-8h超标时的地面主导风向主要为偏南风,大部城市O3-8h浓度高值易集中出现在2~3m·s-1及以下低风速区间.OPAQ统计模式提前1~9 d预报相关系数范围为0.72~0.86,AQI级别预报平均准确率为67%~86%,O3-8h浓度范围预报平均准确率为63%~84%.在O3-8h超标情况多发的4~9月,模式对O3轻度污染和O3-8h超标情况提前3 d预报准确率分别为69%和66%,可为O3-8h超标管控提供参考依据.    

17.  2017年厦门金砖会晤期间人为减排和气象条件变化对臭氧污染特征的影响  
   徐芯蓓  刘涛涛  徐玲玲  洪有为  胡宝叶  陈君怀  易志刚  陈进生《环境科学学报》,2020年第40卷第12期
   针对厦门"金砖会晤"空气质量保障活动,本研究选取2017年8月10日—9月10日的O3、NO2和挥发性有机物(VOCs),以及气象因子等在线观测数据,开展人为减排、副热带高压、台风等对东南沿海城市大气O3污染特征的影响研究.结果表明,研究期间厦门大气O3-8 h平均浓度为(110.0±40.6)μg·m-3.与管控前相比,无台风影响的管控I期的O3-8 h浓度上升了19.9 μg·m-3,而管控II期的O3-8 h浓度下降了27.9 μg·m-3.对于管控I期和II期,台风影响下O3-8 h浓度较无台风时段分别下降85.2 μg·m-3和8.9 μg·m-3.在排放控制和台风的共同作用下,峰会期间厦门大气O3浓度的日变化显现出"削峰填谷"的特征.另外,与管控I期相比,管控II期O3前体物VOCs浓度显著下降,其臭氧生成潜势(OFP)下降了44.6%.总之,运用区域联防联控策略,对臭氧前体物(NOx和VOCs)实施针对性减排,可有效地降低沿海城市大气O3日间最高浓度.    

18.  2016~2019年江西省臭氧污染特征与气象因子影响分析  
   钱悦  许彬  夏玲君  陈燕玲  邓力琛  王欢  张根《环境科学》,2021年第42卷第5期
   利用2016~2019年生态环境部环境监测总站提供的江西省11个设区市的监测数据及同期的国家气象观测站常规观测资料,研究江西省臭氧污染特征与气象因子的关系.结果表明,江西省近几年臭氧污染日益严重,2016年全省臭氧(日最大8 h滑动平均值)平均浓度为80.1 μg·m-3,到2019年上升至98.2 μg·m-3,平均年增长率为6 μg·m-3.2019年江西省11个设区市O3超标总天数为475 d,占总超标天数的72.6%.2016~2018年O3月平均浓度具有典型的季节变化特征:夏季 > 春季 > 秋季 > 冬季,2019年秋季由于降水量显著减少、日照时数增多和气温升高等气象条件导致秋季近地面臭氧浓度异常升高,其平均浓度高于其它季节.臭氧浓度总体与气温、日照时数呈正相关,与相对湿度呈负相关,当气温高于30℃、相对湿度在20%~40%区间、风速在2~3 m·s-1区间时易出现高浓度臭氧污染.江西省臭氧浓度呈现一定的空间分布特征:赣东北地区低于其他地区,南部城市高于北部城市.其中,赣州市臭氧污染较为严重,其2019年平均浓度居全省最高,为104.2 μg·m-3.基于后向轨迹HYSPLIT模型和潜在源解析PSCF对赣州市进行分析,研究结果表明赣州市臭氧污染的主要潜在贡献源区存在一定的季节差异:春季臭氧污染的外来输送源主要来自广东中部和江西北部地区,夏季主要来自江西北部地区,而秋季则主要来自广东北部和安徽中部地区.    

19.  兰州市高分辨率人为源排放清单建立及在WRF-Chem中应用评估  
   郭文凯  李光耀  陈冰  夏佳琦  张瑞欣  刘晓  朱玉凡  陈强《环境科学》,2021年第42卷第2期
   城市尺度高分辨率人为源大气污染物排放清单是城市空气质量预报预警、污染成因分析和减排措施制定的重要基础数据,目前我国西部地区城市尺度的人为源排放清单研究仍然相对薄弱,能对接于空气质量模式的排放清单更为缺乏.本文整合已发表的清单文献,建立了可对接于空气质量模式的2016年兰州市城市尺度的人为源清单模型(HEI-LZ16),将之应用于WRF-Chem模式,评估HEI-LZ16的准确性和适用性.结果表明:兰州市2016年人为源排放的SO2、NOx、CO、NH3、VOCs、PM10、PM2.5、BC和OC总量分别为25642、53998、319003、10475、35289、49250、19822、2476和1482 t·a-1.在模拟时间内,HEI-LZ16相比于MEIC,O3和PM2.5的NME值分别减小了140.2%和28.8%,HEI-LZ16更加准确适用.分析了HEI-LZ16情景下模拟的PM2.5和O3时空分布,兰州市臭氧MDA8呈现冬春季城区低而郊区高,夏秋季河谷城区西部及其下风向地区高的分布特征,夏秋季高浓度区的分布受偏东风和光化学反应的共同影响,冬季城区O3浓度受NOx排放的抑制作用浓度反而降低.PM2.5浓度的高值区主要集中在黄河河谷盆地,本研究表明沿白银—兰州黄河河谷盆地走向的西侧存在一个污染物传输通道,其对兰州市环境空气质量具有较大的影响.    

20.  江苏省2014-2016年臭氧污染区域特征分析  
   茅晶晶  张璘  杨雪  吴仲夏《环境监控与预警》,2018年第10卷第4期
   分析2014—2016年江苏省O3污染状况,以及苏北、苏中和苏南3个典型区域O3年度、季度、日变化和频度占比等分布特征。结果表明,江苏省的O3空间分布呈现北低南高,2014—2016年的O3超标占比由18.4%上升至34.9%;2016年苏北、苏中和苏南地区O3-8h第90百分位数与2014年相比,上升2.7%,21.8%和3.3%;3个区域夏季O3-8h均值最高,春、秋2季次之,冬季最低;O3-1h日变化呈单峰状态,最低值出现在06:00—07:00,最高值出现在15:00—16:00;2016年3个地区的O3频度占比均呈正态分布,主要集中在40~80 μg/m3,所占比例均>15%;苏中和苏南区域2016和2014年相比O3频率占比的变化幅度较大,苏北地区变化幅度不大。指出,江苏省的O3污染程度在逐年提高,污染范围从苏南逐渐往中部和北部城市扩大。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号