首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
固相微萃取一毛细管气相色谱法快速分析水中有机氯农药   总被引:3,自引:2,他引:1  
固相微萃取是一种快速、简便、集萃取浓缩进样于一体的样品前处理技术,具有分析时间短、灵敏度高、无需有机溶剂的优点.本工作用固相微萃取富集水中有机氯农药,毛细管气相色谱分离分析,整个分析过程只需30min,检出限可迭0.01至0.1μg/L,已用于降雨、地面水、海洋中有机氯农药含量的测定.  相似文献   

2.
固相微萃取-气相色谱法测定水中痕量有机氯农药   总被引:3,自引:0,他引:3  
建立了固相微萃取-气相色谱联用快速测定水中14种痕量有机氯农药的方法,对比研究了浸入式直接固相微萃取与顶空固相微萃取两种方式对不同有机氯农药的富集效率,优化了试验条件.方法线性关系良好,检出限为0.1 ng/L~10 ng/L,定量下限为0.2 ng/L~40 ng/L,RSD<8%,实际水样的加标回收率为67.0%~133%.  相似文献   

3.
饮用水源地的有机氯农药测定   总被引:4,自引:0,他引:4  
分别采用传统的液液萃取和无溶剂,集萃取、富集和解吸于一体的固相微萃取法处理水样,毛细管气相色谱ECD检测器分离分析17种有机氯农药,并从方法检出限、加标回收率及样品分析等方面进行比较.结果表明,二者均可满足环境水样分析要求,已用于饮用水源水中有机氯农药的测定.  相似文献   

4.
水中有机磷农药分析前处理方法探讨   总被引:5,自引:1,他引:4       下载免费PDF全文
分别采用液-液萃取、固相萃取前处理方法,提取水中10种常见的有机磷农药,对比了这两种提取方法的测定结果、经济成本、花费时间及对环境的影响,建议逐步用固相萃取法取代液?液萃取法提取水中有机磷农药。  相似文献   

5.
探讨了在污染事故现场采用固相微萃取-车载气相色谱联用测定有机磷农药的分析方法,寻找出较适宜灵敏度与较短分析时间的最佳结合点,以适应污染事故应急现场测定有机磷农药的需求。该法完成一个样品的全部分析时问为30min,简便、高效,适用于应急现场5种有机磷农药的测定。  相似文献   

6.
快速固相萃取法测定食品中多种有机磷农药残留   总被引:5,自引:0,他引:5       下载免费PDF全文
报道了一种简便、快速的石墨碳固相萃取(SPE)食品中多种有机磷农药残留及测定的方法.采用丙酮浸泡、超声提取食品中的有机磷农药,经石墨碳固相小柱净化萃取后,用气相色谱-火焰光度检测法直接测定,加标回收率在72.0%~107%之间,RSD为6.2%~12.7%,最低检出限可达0.001 mg/kg.  相似文献   

7.
采用固相萃取(SPE)技术,结合气相色谱/质谱(GC-MS)选择离子检测法(SIM)对水样中26种有机氯农药(OCPs)进行提取、净化、浓缩前处理,优选了固相萃取小柱填料及萃取、净化条件,优化了GC-MS的工作参数,建立了地下水中26种有机氯农药的SPE-GC-MS分析方法。针对不同的组分,本法加标回收率为76.422%~112.512%,相对标准偏差为4.905%~15.524%,检出限为0.014~0.089μg/L。该方法操作简单,消耗费用低,分析速度快,具有较高的灵敏度和回收率。  相似文献   

8.
固相萃取技术在水源地特定项目监测中的应用   总被引:7,自引:1,他引:7  
采用C18固相萃取(SPE)技术测定水中36种半挥发性有机物(SVOCs),包括硝基苯类、氯苯类、有机氯农药类、有机磷农药类、多环芳烃类共五类有机化合物,用GC-MS分析.研究了有机改性剂对回收率的影响,1L水样加入7ml甲醇对回收率有较好改善.结果表明,平均回收率为51%~118%,相对标准偏差在1.90%~9.79%之间,方法检出限为0.02μg/L~0.32μg/L.该方法适用于监测水源水中多种痕量SVOCs.  相似文献   

9.
发展了一种磁性分散固相萃取技术对环境水体中17种有机氯农药进行萃取测定,并对萃取剂用量、萃取时间、解吸溶剂、盐度等实验影响因素进行了优化。典型萃取过程如下:取100 mg磁性萃取剂分散在200 mL水样中,加入4 g氯化钠,超声2 min完成萃取,用磁铁分离磁性萃取剂,丙酮解吸有机氯组分后进行GC-ECD分析。在优化条件下,实际水样的平均加标回收率为85.6%~96.5%,相对标准偏差为4.1%~6.7%,方法检出限为0.01~0.05 μg/L。方法操作简单、迅速,有机溶剂消耗量很少,环保,满足环境水体中有机氯农药的测定。  相似文献   

10.
邕江流域有机氯农药残留问题的初步研究   总被引:1,自引:1,他引:0  
采用固相萃取和GC-ECD对邕江流域水体中17种痕量有机氯农药的残留状况进行分析测定,检测结果表明,邕江干流均检出硫酸硫丹,但有机氯农药浓度较低,均未超过现有相关标准。城市内河残留的有机氯农药以六六六为主,主要来自于长期的历史残留,而硫酸硫丹除朝阳溪和相思湖丰水期未检测到外,均普遍检出。方法检出限为1~5ng/L,替代物加标回收率为103.5%~112.0%。  相似文献   

11.
12.
南四湖表层沉积物中有机氯农药的含量及分布特征   总被引:3,自引:0,他引:3  
利用气相色谱-电子俘获检测(GC-ECD)方法对南四湖表层沉积物中13种有机氯农药进行了分析测定。每个采样点均检出了有机氯农药,与世界其它类似水体比较,南四湖表层沉积物中的有机氯农药处于低水平含量,属于低生态风险水平。多数点位有机氯农药均是由于历史上使用造成的,但不排除个别点位存在新的污染源。  相似文献   

13.
The effectiveness of the treatment process for the removal of pesticides in the final water supplies in Delhi has been evaluated. Samples were collected during 2000–2005 from five water treatment plants (WTPs). Analysis was carried out to identify pesticides, which are more commonly encountered in treated drinking water. In most of the treatment plants, the concentrations of lindane, total endosulphan and total DDT were significantly less in the finished water. Monitoring of these less soluble pesticide in the finished water from WTPs was done quarterly to arrive at the quality trends and to plan for the mitigation action, in case the concentration of the parameter exceeded at any site or time.  相似文献   

14.
微波萃取-气相色谱/质谱法测定土壤中的有机氯农药   总被引:11,自引:0,他引:11  
通过微波萃取提取土壤中的有机氯农药,萃取溶液经浓硫酸脱色、佛罗里硅土柱净化,最后用气相色谱/质谱法分析.以石英砂为基体进行加标回收测定,有机氯农药的回收率在75.5%~103%之间,检出限为0.01μg/kg.  相似文献   

15.
北京工业废水和城市污水中有机氯农药残留分析   总被引:2,自引:0,他引:2  
建立了基于HLB固相萃取柱和气相色谱-电子捕获(GC-ECD)测定水体中有机氯农药的方法,并对方法的回收率、灵敏度进行了评价,同时分析了北京市七类典型污染点源50个采样点位有机氯农药的浓度,检测到的有机氯农药包括γ-六六六、β-六六六、4,4’-滴滴涕、α-六六六、δ-六六六、硫丹Ⅰ、4,4’-滴滴伊、艾氏剂和异狄氏剂,它们的检出率分别为90%、60%、50%、46%、26%、8%、6%、2%和2%。主要有机氯农药污染残留为γ-六六六、β-六六六和4,4’-滴滴涕。检出有机氯农药浓度范围是0.20~76.40ng/L。方法对有机氯农药的回收率达到60.93%~141.50%,方法检测限为0.27~2.90ng/L。  相似文献   

16.
A membrane extraction-gas chromatography method was developed fordetermination of organophosphorus pesticides and related compounds including methamidophos, DDVP, dimethoate, methyl parathion, parathion, thiophosphoric acid trimethyl ester, and thiophosphoramidic acid dimethyl ester in water samples. In thismethod, surface-modified acetic cellulose membranes were used to extract the target analytes in water samples, the extracted analytes were back-extracted into a small amount of methanol, andgas chromatography with pulsed flame photometric detector (GC-PFPD) was used to determine the concentrations of targetanalytes in the extracts. The recoveries obtained for thetarget analytes spiked into the water samples ranged from 66to 94%. The method detection limit for each target analyte was 0.05 g L-1. The method developed in this study had shown the advantages of being cheap, simple, fast, and reliable. It had been used successfully to determine the concentrations of target analytes in river water samples.  相似文献   

17.
用正己烷一次同时萃取地表水中的百菌清、环氧七氯和有机氯农药,萃取液脱水后进气相色谱仪进行测定。当取样体积为500ml时,方法检出限为0.01~0.02μg,/L,标准曲线相关系数大于0.999,方法精密度的相对标准偏差为1.5%-4.0%,加标回收率为81.6%~109.6%。该方法用于实际样品测定,结果令人满意。  相似文献   

18.
Dermal exposure to pesticides is one of the main sanitaryproblems which greenhouses workers face. With the dual aimsof establishing both the body part that receives the greatestexposure and the variable that has greatest influence on this exposure level, 22 pesticide application trials were performed. Trials were carried out in different greenhouse vegetable crops,using different pesticides and different spray diameters from the spray gun. In order to determine dermal exposure, the wholebody method was used. Pieces of the applicator suit were subject to an extraction procedure and their pesticide contentdetermined using GC-NPD analysis. Multivariate analysis were applied to the data obtained. Principal component analysis showed that all trials produced a high exposure level on lowerleft leg and lower right leg. Cluster analysis distinguished between three sample groups. The most and the least affectedparts were clearly distinguished. Discriminant analysis indicated that the thin drop size of the spray gun is responsible for both the differences between groups and the minimum or maximum exposure level measured on the applicatorsuit. Therefore, selecting the variables, lower legs and thindrop size, is considered fundamental in designing programs formonitoring pesticide exposure.  相似文献   

19.
Qiantang River is a typical river used for drinking water source, flowing through agricultural area in east China. Surface water samples at 45 sampling sites from the river were collected and analyzed for 13 organochlorine pesticides (OCPs) during six surveys in 2 years of 2005–2006. Sediments, soils, farmland runoff water and dry/wet deposition of this region were also measured for their OCPs residue in order to know possible source of OCPs contamination. The total OCPs concentrations in surface water were 7.68–615.2 ng/l. β-HCH, δ-HCH, Aldrin, Heptachlor, Heptachlor epoxide are the major OCPs in water. The maximum levels of OCPs in water were found in July, while significantly lower OCP concentrations were measured in January. Significant linear correlation was found between the concentration of HCH and that of total 13 OCPs in water. The measured OCP concentrations in sediments, soils, farmland runoff water and dry/wet deposition are discussed in relation to concentrations and patterns found in the surface water. Comparison of OCP levels in sediments and soils led to conclusion that erosion of soil contribute significantly to the contamination of water. The OCPs dry and wet deposition to water body was estimated to 0.49 and 0.86 ton/year, respectively. The ratio of α/γ-HCH and (DDE+DDD)/∑DDT in environmental matrix indicated there probably existed new OCPs input of lindane and dicofol into the river.  相似文献   

20.
The residues of 13 organochlorine pesticides (OCPs) in surface water and HCHs and DDTs in suspended particulate matter (SPM) from rivers and lakes in Yangtze River catchment of Wuhan, China, were investigated. The concentration of total OCPs in surface water varied from 1.01 to 46.49 ng l−1 (mean 10.55 ng l−1). The levels of total HCHs (ΣHCH) and total DDTs (ΣDDT) in surface water were in the range of 0.55–28.07 ng l−1 and lower than detection limit to 16.71 ng l−1, respectively, which was lower than Chinese standards on the whole. For OCPs residues in SPM, the mean levels varying from 0.20 to 34.72 ng l−1 and 0.46 to 2.72 ng l−1 for ΣHCH and ΣDDT, respectively, which ranked the relatively higher levels among Chinese studied rivers. Results from this investigation showed that previous excessive usage of technical OCPs was the main reason for the residues of HCHs and DDTs both in surface water and SPM, although some new sources were likely to occurred in the region. Apart from the OCPs in SPM originated from upstream in flood season, one of the important sources of OCP residues both in water and SPM in Yangtze River was supposed to be the inputs of its tributaries. Additionally, in situ water-SPM phase distributions of OCPs indicated that HCHs tended totransport with water as well as DDTs was prone to combine with SPM in Yangtze River catchment of Wuhan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号