首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
广州市大气细粒子的化学组成与来源   总被引:12,自引:3,他引:12  
对广州市四个不同功能区(石井、荔湾、天河和海珠)的夏季大气PM2.5进行了为期一个月的监测,并测试分析了其化学组成(有机碳/元素碳、水溶性离子和元素)。结果表明,广州市夏季PM2.5的平均浓度为97.54μg/m3,其化学组分有机物、SO42-和EC对PM2.5质量浓度贡献最大,分别占PM2.5质量浓度的42%~52%、25%~47%和10%~17%。化学质量平衡模型研究表明,机动车排放和煤燃烧是对广州市大气PM2.5影响最大的污染源,其贡献率分别为54%~75%和32%~52%。  相似文献   

2.
宁波和温州地区夏季大气中不同粒径颗粒物特征分析   总被引:1,自引:0,他引:1  
对宁波地区北仑和奉化站、温州地区乐清站3个监测点夏季TSP、PM10、PM2.5和PM1.0进行监测,测试分析各种粒径颗粒物浓度水平和粒径分布特征,并通过化学质量平衡(CMB)受体模型对颗粒物进行源解析。监测结果显示,夏季宁波、温州地区TSP和PM10日均浓度为0.049~0.134mg/m3和0.025~0.084mg/m3,均未超过我国环境空气质量二级标准;PM2.5日均浓度为0.007~0.069mg/m3,按美国2006年EPA最新标准限值0.035mg/m3衡量,奉化、乐清、北仑站的超标天数占总监测天数的比例分别为75%、40%和37.5%。粒径分布统计结果显示,3个监测站点PM10占TSP的比例为48.78%~86.96%;PM2.5占TSP的比例为33.33%~72.46%;奉化和乐清监测点PM10中PM2.5和PM1.0的比例平均值在50%以上。源解析结果显示,夏季TSP主要来源于土壤尘,其次是建筑尘和煤烟尘,其贡献率分别为40.70%~55.49%、9.62%~13.64%和5.85%~17.28%。  相似文献   

3.
TSP-PM10-PM2.5-2型中流量大气颗粒物采集系统的开发和应用   总被引:13,自引:0,他引:13  
自行开发并研制了TSP-PM10-PM2.5-2型中流量TSP、PM10、PM2.5大气颗粒物采集系统,是目前中国唯一可以采集TSP、PM10、PM2.5样品并提供足够的样品量进行大气颗粒物化学成分分析的中流量大气颗粒物采集器.该系统精心设计和加工的限流孔可以保持完全固定的流量,保证切割粒径的稳定,减小采样的误差并方便操作.该系统已经成功地应用于20多个城市和地区大气颗粒物的监测和研究中,为研究大气颗粒物的污染状况和来源提供了有效的技术手段和支持.  相似文献   

4.
石家庄市大气颗粒物元素组分特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物的污染特征及其来源,于2013年4—5月在主城6区分别采集TSP、PM10和PM2.5颗粒物样品,利用ICP-MS分析其中的22种元素浓度。结果表明,石家庄市城区Ca、Fe元素在各粒径颗粒物中含量都较高,PM2.5中的S、K含量较高,PM10和TSP中Mg、Al的浓度相对较高。颗粒物的主要来源为燃煤尘、道路尘和建筑尘,TSP、PM10和PM2.5具有较好的统计相关性和同源性。  相似文献   

5.
本研究以乌鲁木齐工业区、交通区、生活区、风景对照区4个典型区域为研究对象,采集了采暖期大气颗粒物TSP、PM10、PM5、PM2.5,并对其进行质量浓度分析。结果表明:在采暖期大气中TSP的浓度范围为87.94~325.61ug/m3;PM10的浓度范围为76.69~299.21ug/m3;PM5的浓度范围为79.68~294.95ug/m3;在PM2.5的浓度范围为71.80~213.30ug/m3。总体来看,乌鲁木齐采暖期TSP、PM10、PM5、PM2.5的浓度存在一定的差异性,各组分浓度分布为工业区交通区生活区风景对照区,这与采样区受污染程度有关。  相似文献   

6.
2008年春季呼和浩特沙尘天气与TSP和PM_(10)污染的关系   总被引:3,自引:0,他引:3  
利用TSP和PM10逐时监测数据,对2008年春季呼和浩特市TSP和PM10浓度的变化及其在沙尘天气过程中的相关性进行了分析,结果表明:(1)2008年春季TSP和PM10浓度值多高于国家环境空气质量二级标准,沙尘天气是影响空气环境质量的主要诱因。(2)TSP和PM10浓度在沙尘暴发生当日及前后几天均会有不同程度的增加,且以沙尘天气发生当日浓度最大。TSP和PM10浓度3月份最低,4月份次之,5月份最高。(3)不同沙尘天气过程中,TSP和PM10浓度相差明显,且TSP与PM10/TSP值随沙尘天气强度的增加而增大,PM10在不同沙尘天气过程中均为主要组成成分。(4)沙尘天气过程中TSP与PM10呈线性相关。  相似文献   

7.
通过2015年在沈阳市采集PM2.5样品及源类样品,分析样品的质量浓度和化学组成,用化学质量平衡(CMB)模型对该市PM2.5来源进行解析。结果表明:沈阳市大气中PM2.5浓度时空变化特征明显;各主要源类对沈阳市PM2.5的分担率依次为煤烟尘(28.03%)、二次无机离子(22.63%)、机动车尾气尘(17.27%)、城市扬尘(13.28%)、建筑尘(5.94%)、土壤风沙尘(5.82%)、道路尘(3.04%)、生物质燃烧尘(2.74%)和冶金尘(1.25%)。燃煤和机动车的有效控制既能降低本类源的贡献,也能降低二次无机离子,体现了多源类综合治理原则。  相似文献   

8.
选用博乐市2010年大气PM10与TSP监测数据月均值,分析了PM10与TSP在大气中的浓度变化相关性趋势、沙尘暴天气对其相关性的影响以及PM10占TSP中的浓度比,并得出PM10与TSP的浓度变化趋势除沙尘暴天气干扰外非常相似,具有很好的相关性。  相似文献   

9.
以长春为例研究环境空气中TSP、PM_(10)和PM_(2.5)的相关性   总被引:2,自引:0,他引:2  
选取长春市解放大路与人民大街的交叉口为研究地点,分别进行TSP、PM10和PM2.5的采样和分析.然后利用相关系敷法和t检验对测定结果进行相关性分析,得到备元素的含量在三种污染物中的相关系敖:在TSP与PM10中为0.9349;在PM2.5与PM10中为0.8797;在TSP与PM2.5中为0.7824.得到各元素含量在三种污染物中的T检验统计值,在TSP与PM10中为0.90103;在PM2.5与PM10中为0.04745;在TSP与PM2.5中为0.047986.从分析结果可以看出,各元素含量在TSP与PM10中的相关性最好,在PM2.5与PM10中次之,研究结果为相关环境管理提供科学依据.  相似文献   

10.
分别在冬季及夏季选取具有典型气候特性的天气,采集空气中TSP和PM10.根据采样前、后滤膜重量之差及采样标况体积,计算TSP质量浓度,分析了TSP和PM10在大气中污染状况,研究了TSP和PM10的相关性及PM10占TSP的比例,并得出结论:在冬、夏二季TSP和PM10的浓度值变化趋势非常相似,在冬季时TSP和PM10...  相似文献   

11.
工业城市有机化工异味应急监测快速溯源   总被引:1,自引:0,他引:1  
结合淄博化工园区有机化工异味的应急监测,研究了工业城市有机化工异味的快速溯源。针对多种异味混杂,现场利用便携式GC-MS对空气中引起异味的有机化合物进行定性和定量,结合三点比较式臭袋法测定厂界臭气浓度值,根据风向,对照企业污染物名单快速溯源,并根据测定结果和厂界臭气浓度限值对排污企业进行行政处理。  相似文献   

12.
采用“等效积分法”对沈阳市化学危险目标进行化学危险度评估,确定沈阳化工厂等六家企业列为沈阳市重点化学危险目标,建立化学突发事故应急救援体系。建议沈阳化工厂和东北制药总厂建立大气连续自动监测预警系统(监测特征气体),有效预防和控制化学事故发生。  相似文献   

13.
不同气团来源对广州细颗粒物理化特性的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
利用2006年7月广州细颗粒物质量浓度、数谱分布与化学组成的观测数据与气团后向轨迹聚类分析结果,系统分析了不同气团来源对广州细颗粒物理化特性的影响。观测期间,广州气团来源可分成来自远海、近海、西面陆地和北面陆地4种类型。细颗粒物总数浓度水平在4种类型中基本相当。当气团来自远海时,二次转化影响较小,PM2.5质量浓度较低,颗粒物数浓度从大到小依次为老化爱根核模态新鲜爱根核模态度积聚模态;受到海洋气团的影响,Cl-在PM2.5中比例为4种类型中最大。气团来自近海时,颗粒物二次生成与老化现象突出,数谱峰值出现在积聚模态,而其他类型出现在爱根核模态;SO2-4、OC与NO-3之和在PM2.5中的比例大于50%,为4种类型中最高。气团来自西面陆地和北面陆地时,细颗粒物受陆地传输老化气团和本地来源影响均较明显。来自北面陆地时,250 nm以上颗粒物数浓度明显升高,是PM2.5平均浓度远高于其他类型的直接原因之一。  相似文献   

14.
为建立恒压氮气隔断连续流动分析法测定水样化学需氧量的分析方法,将连续流动分析法恒流空气隔断改为恒压氮气隔断,优化试剂配方和反应模块,结果表明:恒压氮气隔断法注入氮气的压力是0.06 MPa,仪器稳定时间是20~35 min,持续分析样品时间大于4 h,指标均优于恒流空气隔断法;标准曲线在2.5~40.0 mg/L范围内,相关系数大于0.999,方法检出限为0.44 mg/L,相对标准偏差为0.2%~2.6%,加标回收率在93.8%~103.8%之间,检出限优于恒流空气隔断法,精密度和正确度满足质量控制要求;实样和标样方法比对测定结果相对标准偏差小于5%,结果精密度优于标准的手工法。恒压氮气隔断连续流动分析法适用于大批量低浓度水样化学需氧量的快速检测,对于密度大、黏度大液流恒压氮气隔断具有更好的稳定性、灵敏度和正确度。  相似文献   

15.
探讨了家用除湿机作为空气水溶性物质采集器的可行性。通过离子色谱仪对冷凝水离子成分的分析,并与空气总悬浮微粒(TSP)可溶性化学成分的对比,发现水汽中大部分阴阳离子的含量只比TSP低1个数量级。但TSP中一般检测不出亚硝酸根,而在水汽中则可检测出亚硝酸根离子,且水汽中亚硝酸根离子的浓度与取样位置的大气环境质量有关。  相似文献   

16.
空气质量数值模型的构建及应用研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
综述了近年来国内外空气质量模型的发展历程、空气质量数值模型构建的关键技术以及应用研究。指出了目前空气质量数值预报及应用主要面临气象条件,尤其是大气边界层模拟、大气污染物排放源和大气物理化学过程等问题。提出,应当通过规范化制作和完善排放源清单数据,建立统一的排放源分析标准,提高排放源数据的准确性;多向发展观测手段,加大监测密度和频率,并进行实验室化学分析,提出适合我国的大气物理化学机制。就空气质量模式而言,对模式方案进行优化,以及使用气象、卫星资料同化等技术手段,将其与观测相结合,构建监测与预报系统相结合的统一体系,应用于多平台。  相似文献   

17.
2015年8月22日至9月26日利用在线GC-MS/FID和离线Canister-GCMS/FID采样并分析了重庆城区7个监测点位的96种VOCs,结果表明,城区总挥发性有机化合物平均体积分数为42.43×10-9,且空间分布特征为"中心城区高,周边低"。重庆本地高乙烷、高乙烯和高乙炔浓度呈区域污染现象,且城市监测点位主要受交通源、工业排放和溶剂挥发的影响,缙云山站则主要以生物源排放为主。重庆市城区气团的OH自由基反应速率平均值为8.86×10-12cm3/(mol·s),最大反应增量活性平均值为4.08 mol/mol,与乙烯相当,说明本地大气化学反应活性较强。重庆城区对OH自由基损耗速率贡献最大的组分是烯/炔烃(35%),对臭氧生成潜势贡献最大的组分是芳香烃(39%)。乙醛、乙烯和甲苯等物质是VOCs的关键活性组分。  相似文献   

18.
空气中总悬浮颗粒物的X射线衍射定性分析研究   总被引:2,自引:0,他引:2  
以天津市环境监测中心采集的空气中总悬浮颗粒物(TSP)膜(971012号)为样品,使用日本理学D/maxRAX射线衍射仪对其进行化合物定性分析,并介绍样品的采集与制样方法、仪器测试条件。最后通过JCPDSICDD(国际粉末衍射数据中心)标准数据库检索出该样品所含的全部化合物  相似文献   

19.
城市大气可吸入颗粒物的研究进展   总被引:13,自引:6,他引:7       下载免费PDF全文
可吸入颗粒物逐渐成为我国许多大中城市的首要空气污染物,对其研究是当前国际大气化学界的研究热点。纵观国内外有关可吸入颗粒物的研究进展,主要是围绕可吸入颗粒物的来源及解析技术、基本特性、采样及分析方法、对人类危害和对环境的影响等方面进行了阐述,同时也对今后的研究发展趋势进行了展望。  相似文献   

20.
Within the framework of CityDelta open model inter-comparison exercise, two different atmospheric chemical transport models, comprehensive air quality model with extension and transport chemical aerosol model, have been applied over a domain centred on Milan (North of Italy) as a result of a cooperation of five Italian groups. The two models have shared the same input fields for yearly PM10 simulations. The paper illustrates the analysis of the particulate matter-simulated concentrations and the comparison with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号