首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
微波提取高效液相色谱法测定土壤中15种痕量多环芳烃   总被引:6,自引:1,他引:5  
采用微波提取结合高效液相色谱技术测定了土壤中15种PAHs的含量.比较了用微波提取、索氏提取和超声萃取3种土壤样品的前处理方法对多环芳烃测定的影响,考察了色谱柱的性能、梯度洗脱条件的优化、荧光检潮波长程序变换及柱温等因素对15种PAHs组分之同分离的影响.经优化后的HPLC方法对15种PAHs的最低检测限为0.10~0.80 μg/kg,相对标准偏差为0.60%~4.60%,方法的回收率为58.1%~97.8%.实验结果表明,该方法兵有高效、快速、灵敏等特点,可以用于环境土壤样品中痕量PAHs的检测.  相似文献   

2.
以美国国家标准技术研究院(NIST)2种沉积物标样SRM 1944和SRM 1941b为研究对象,建立并优化了QuEChERS结合HPLC测定沉积物中14种多环芳烃的前处理方法,并与传统索氏提取进行比较。优化后的QuEChERS方法:样品经乙腈浸泡后,超声15 min,漩涡振荡3 min,以NaCl和无水MgSO_4盐析,提取液经PSA净化后经HPLC-FLD测定。该条件下14种PAHs的方法检出限为0.5~5.0μg/kg,SRM 1944和SRM 1941b中PAHs回收率分别为73.4%~104.9%和71.9%~96.4%,相对标准偏差分别为0.47%~3.45%和0.87%~3.05%。索氏提取SRM 1944与1941b回收率分别为78.9%~109.3%和80.9%~108.2%,相对标准偏差分别为1.46%~10.3%和1.27%~10.8%。优化后的QuEChERS回收率与索氏提取较为接近,但具有更高的精密度。将该方法用于实际海洋沉积物提取,PAHs测定值与索氏提取较为接近。优化后的QuEChERS方法满足批量沉积物样品中PAHs的快速测定要求。  相似文献   

3.
乌鲁木齐市新市区大气气溶胶中多环芳烃的GC/MS分析   总被引:5,自引:0,他引:5  
采用气相色谱-质谱联用技术(GC/MS)分析测定了乌鲁木齐市新市区的大气气溶胶样品16种EPA优控多环芳烃(PAHs)的含量。通过索氏提取气溶胶样品,抽提物经硅胶层析柱分离,使用16种多环芳烃混合标准样品绘制标准曲线,以外标法对PAHs进行定量分析,并根据所得数据浅析了多环芳烃污染来源。结果表明,乌鲁木齐市新市区大气中由于汽车尾气排放和煤的燃烧造成的多环芳烃污染均存在。  相似文献   

4.
研究了加速溶剂萃取(ASE)、固相萃取柱净化(SPE)、高效液相色谱仪(HPLC)联合测定土壤中16种多环芳烃(PAHs)的分析方法,选择以正己烷/丙酮(1+1,V/V)作为ASE提取溶剂,提取液经SPE硅胶小柱净化,正己烷/二氯甲烷(1+1,V/V)进行洗脱,洗脱体积为10 m L,洗脱液经旋转蒸发浓缩至近干,过0.22μm有机滤膜,用乙腈定容至1 m L,最后用HPLC-紫外检测器对提取液中16种PAHs进行定量分析。土壤中16种PAHs的方法检出限为2.8~4.9μg/kg,加标回收率为81.9%~102%,相对标准偏差为2.5%~6.2%,完全满足土壤中PAHs分析的质量控制要求,该法稳定性好、准确度高、可操作性强,适合于土壤样品中16种PAHs的准确测定。  相似文献   

5.
加速溶剂提取气-质联用分析土壤中的多环芳烃   总被引:2,自引:2,他引:0       下载免费PDF全文
建立了加速溶剂提取-凝胶渗透色谱净化和气相色谱-质谱联用快速分析土壤中16种多环芳烃的新方法。方法的检出限、定量限分别为1.1~12μg/kg、3.7~40μg/kg。16种PAHs的回收率为76.6%~96.8%,相对标准偏差为2.9%~9.5%。应用于多个环境样品的分析测试,结果满意。  相似文献   

6.
对黑潴河下游表层沉积物中16种多环芳烃(PAHs)的污染现状进行了调查研究。结果表明,表层沉积物中PAHs总量变化范围为41.2~129.3ng/g(平均值为83.7ng/g),PAHs的组成以5~6环PAHs组分为主。黑潴河下游沉积物中PAHs主要来源于周边地区化石燃料的高温燃烧。比较了基于不同方法建立的沉积物中PAHs环境基准值的差异,分析产生差异的原因,选择生态效应区间法对黑潴河沉积物中的PAHs进行了生态风险评价。黑潴河下游PAHs生态风险较小,属PAHs低生态风险河道。  相似文献   

7.
建立了快速、简便测定城市污泥中4种主要PAHs污染物(菲、荧蒽、芘、苯并[α]芘)含量的检测方法。利用Qu ECh ERS提取方法,样品经乙腈并以超声波辅助提取,提取液过0.22μm滤膜后,采用气相色谱-质谱法对4种物质进行测定。对QuEChERS萃取条件及超声时间进行了优化,确立最优试验条件,比较建立的萃取方法与传统索氏提取方法对加标样品中4种PAHs的萃取效率。结果表明,4种PAHs得到较好的分离效果,方法检出限为0.27~0.49μg/kg,相对标准偏差为2.8%~8.6%(n=7),加标回收率为81.9%~116.3%,对菲、荧蒽、芘、苯并[α]芘提取效率与索氏萃取方法相当。运用该方法对西安某污水处理厂的原污泥和堆肥处理后污泥进行检测,4种分析物均有检出。该方法具有操作简便、灵敏、环保等特点,适用于城市污泥中菲、荧蒽、芘、苯并[α]芘的定性定量分析。  相似文献   

8.
本文综述了土壤中多环芳烃PAHs的预处理和测定分析方法,主要介绍了索氏提取、超声波萃取、超临界流体萃取、加速溶剂萃取和协同萃取等萃取方法。检测方法具体介绍了高效液相色谱法(HPLC)法、恒能量同步荧光法(CESF)、气相色谱-质谱(GC/MS)法等多环芳烃测定方法。重点分析比较了提取和纯化过程,为今后研究土壤中多环芳烃提供了一定支持和技术参考。  相似文献   

9.
天津城郊土壤中PAHs含量特征及来源解析   总被引:4,自引:1,他引:3  
以天津市郊环城四区为研究对象,系统采集了环城四区95个表层土壤样品,利用高效液相色谱仪对16种PAHs进行分析测定,结果表明,西青、东丽、津南和北辰土壤中16种PAHs的总量范围分别为62.6~1 994.9、36.1~4 074.7、20.1~2 502.5、22.1~707.7μg/kg;平均含量分别为445.8、841.8、509.5、242.5μg/kg。四区中都以高环多环芳烃为主,西青、东丽、北辰和津南高环多环芳烃分别占多环芳烃总比例的45.4%、42.2%、38.8%和38.7%。空间分析的结果表明,靠近天津市市区样点土壤中多环芳烃的含量要明显高于远离市区土壤中多环芳烃的含量。利用环数PAHs的相对丰度和比值法对天津市郊环城四区土壤中多环芳烃的污染来源进行了解析,研究区土壤监测样点的PAHs主要来自燃烧源,少部分来自石油类来源或几种污染源的共同复合累加的作用。  相似文献   

10.
在淄博市6 家代表性城市污水处理厂采集12个污泥样品,采用GC-MS法测定污泥中16种多环芳烃(PAHs)的含量,研究分析PAHs分布特征和来源,并作风险评价。结果表明,淄博城市污泥中共检出15种PAHs,总质量比(∑16PAHs)范围为0.23 mg/kg~3.76 mg/kg,平均值为1.20 mg/kg,各污泥间∑16PAHs差异显著;7种致癌性PAHs的质量比为0.11 mg/kg~2.56 mg/kg;污泥以6环PAHs为主。来源分析显示,污泥中PAHs主要来源于生物质和煤的燃烧,兼有汽车尾气排放的特征。风险评价结果显示,6 家污水处理厂污泥中PAHs毒性当量浓度(∑16TEQ)由高到低为Z2>Z5>Z6>Z4>Z1>Z3,7种致癌性PAHs是致癌风险的主要贡献者,其中二苯并[a,h]蒽贡献率最高。  相似文献   

11.
A supercritical fluid extraction (SFE) method was developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) from fresh and fallen pine needles. Toluene-modified CO2 was used as the extracting fluid, and the extracted PAHs were analyzed by GC-MS. Using a two-stage extraction procedure, a static extraction at 180 degrees C and a dynamic extraction at 60 degrees C, and an in-cell silica gel plug plus a post-oven silica gel column, the extraction and fractionation of PAHs can be accomplished in one step. Over a seven month period, a significant variation was observed for PAHs in urban samples, while PAHs in mountain samples were at much lower levels (by a factor of approximately 8) and showed little seasonal change. Although dry fallen needles and fresh needles contained similar amounts of PAHs, in the fallen needles the lower molecular weight PAHs were partially lost while the higher molecular weight PAHs were slightly enriched. Pollution in urban areas was found to be highly localized, and buildings and trees are believed to be important factors in the restriction of atmospheric PAHs.  相似文献   

12.
In order to characterize and compare the chemical composition of diesel particulate matter and ambient air samples collected on filters, different extraction procedures were tested and their extraction efficiencies and recoveries determined. This study is an evaluation of extraction methods using the standard 16 EPA PAHs with HPLC fluorescence analysis. Including LC analysis also GC and MS methods for the determination of PAHs can be used. Soxhlet extraction was compared with ultrasonic agitation and pressurized fluid extraction (PFE) using three solvents to extract PAHs from diesel exhaust and urban air particulates. The selected PAH compounds of soluble organic fractions were analyzed by HPLC with a multiple wavelength shift fluorescence detector. The EPA standard mixture of 16 PAH compounds was used as a standard to identify and quantify diesel exhaust-derived PAHs. The most effective extraction method of those tested was pressurized fluid extraction using dichloromethane as a solvent.  相似文献   

13.
In this paper, improvements obtained by using focused microwaves for extraction, in the analysis of polycyclic aromatic hydrocarbons (PAHs) adsorbed on particulate matter, are discussed. The method was tested on the following PAHs, which are considered to be among the most harmful with regard to carcinogenicity: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene. The extraction of PAHs and concentration of the sample can be performed in 3 h with a recovery of at least 70% and a maximum standard deviation of 4%. These steps are followed by clean-up on a SPE (solid-phase extraction) cartridge and analysis by GC-MS. Real samples collected in the urban area of Bari were analysed according to the proposed procedure.  相似文献   

14.
Solvent microextraction (SME) was applied to the extraction of polycyclic aromatic hydrocarbons (PAHs) from spiked and real environmental soil samples with different matrices. Soil sample was mixed with 7 mL of acetone and 14 mL of water to allow partitioning of the PAHs from the soil to the liquid phase. A 2 microL octane drop suspended from a microsyringe needle tip was then immersed into the stirred solution-soil mixture for extraction. After an 11 min extraction, the octane drop was withdrawn into the syringe and injected directly into the GC for identification and quantification. The whole analysis procedure took 27 min, with an extraction time of 11 min, and a GC separation time of 16 min. A second extraction could be undertaken whilst the GC is running, hence the GC run time currently limits the sample throughput. In this method, a small amount of organic solvent was used for the extraction process, which produced little waste. The limits of detection for lower molecular weight (< 230) PAHs range from 0.13 to 0.36 mg kg-1, and for higher molecular weight (> 250) PAHs are estimated to be between 0.5 and 1.0 mg kg-1, with RSD values generally under 20%. Due to the small volumes of organic solvent used, the consumable cost per extraction is only US$ 0.12. This is the first report of the application of SME to solid samples, and the first report of the use of SME for the analysis of PAHs.  相似文献   

15.
多环芳烃测定中净化方法的研究   总被引:2,自引:1,他引:1  
王伟 《干旱环境监测》2009,23(4):200-204,208
对多环芳烃测定中的净化方法进行研究,为了选出最佳净化柱,在一定条件下分别采用硅胶LC-Si、弗罗里LC-Florisil和C18固相萃取净化柱对一定浓度的多环芳烃标准溶液进行净化,测定吸附后流出液多环芳烃浓度,计算吸附率;测定洗脱后流出液多环芳烃浓度,计算洗脱率。测定结果为硅胶、弗罗里和C18固相萃取净化柱对多环芳烃的吸附率分别在87.1%~100%,99.5%~100%和96.6%~100%之间,洗脱率分别在0~106%,78.7%.109%和79.0%~115%之间。结果表明,GC/MS内标法测定样品中多环芳烃使用最理想的净化柱为弗罗里净化小柱,其次为C18净化小柱,最后为硅胶净化小柱。  相似文献   

16.
A GC-MS procedure for the determination of hydrocarbons in air samples from Oviedo, Spain, was developed. Air hydrocarbons were sampled with a high volume sampler equipped with a holder containing a glass fiber filter, to trap the particulate phase, and two polyurethane foams to capture hydrocarbons of the vapour phase. Compounds were extracted with CH2Cl2 by Soxhlet extraction and then fractionated using column chromatography with alumina silica. Analyses of the fractions were performed by GC-MS in the electron ionization mode. PAHs and n-alkanes were the compounds examined in this work. Samples collected in the vicinity of the Faculty of Chemistry (a semi-urban area) were analysed. The total concentration of PAHs in the air samples analysed ranged from 28 to 76 ng m(-3). The total concentration of n-alkanes and PAHs in the vapour phase exceeded the concentration in the particulate phase in the samples analysed.  相似文献   

17.
常州市秋季大气PM2.5中多环芳烃污染水平及来源   总被引:2,自引:0,他引:2  
为了研究常州市秋季大气PM2.5中多环芳烃的污染水平及其来源,在常州市布设了6个采样点,分别代表交通干道区、商业混合区、居民文教区、远郊区、工业区和对照点,于2013年10月进行大气PM2.5的采样,采用微波萃取-高效液相色谱法测定其中16种USEPA优控多环芳烃的浓度值,并分别通过比值法和因子分析法判断其主要来源。结果表明,常州市秋季大气PM2.5中多环芳烃的主要来源为煤燃烧和机动车排放。  相似文献   

18.
Pressurised fluid extraction (PFE) of polycyclic aromatic hydrocarbons (PAHs) from a certified reference material (CRM) 524 has been firstly optimised following a central composite design. The instrumental parameters of the PFE (pressure, temperature, extraction time and number of solvent cycles) were studied in order to obtain maximum extraction yields. Neither pressure nor extraction time or temperature seemed to have any significant effect on the extraction yield, therefore one extraction cycle was enough to exhaustively extract all the PAHs from CRM 524. Once the instrumental conditions were established, the extraction yields obtained with eight different solvents or solvent mixtures [acetone, dichloromethane, acetonitrile, acetone-dichloromethane (1 + 1 v/v), acetone-isohexane (1 + 1 v/v), isohexane, methanol and toluene] from the CRM 524 were compared and showed that the best recoveries were obtained with acetone-isohexane (1 + 1 v/v). Finally, the effect of sand, silt, clay and the organic matter content of soil was investigated with respect to recovery of PAHs by PFE with different solvents or solvent mixtures for aged soil samples. In this case, eight soils with different sand, silt, clay and organic matter contents were slurry spiked with PAHs and aged for 19 days. Three aliquots of each slurry spiked soil were extracted with the previously mentioned solvents and the results were studied by means of principal component analysis (PCA) of the whole data set (soil composition, solubility parameter of the solvent and recoveries of all PAHs) and partial least squares (PLS). Clay and organic matter content and the squared solubility parameter have the highest correlation with the recovery of PAHs from soil samples.  相似文献   

19.
Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P < 0.05) from the amounts degraded. Although the HPCD extraction did overestimate the microbially degradable fraction of the higher molecular weight PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号