首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The Ely Creek watershed (Lee County, VA) was determined in 1995 to be the most negatively affected by acid mine drainage (AMD) within the Virginia coalfield. This determination led the US Army Corps of Engineers to design and build passive wetland remediation systems at two major AMD seeps affecting Ely Creek. This study was undertaken to determine if ecological recovery had occurred in Ely Creek. The results indicate that remediation had a positive effect on all monitoring sites downstream of the remediated AMD seeps. At the site most impacted by AMD, mean pH was 2.93 prior to remediation and improved to 7.14 in 2004. Benthic macroinvertebrate surveys revealed that one AMD influenced site had increased taxa richness from zero taxa in 1997 to 24 in 2004. While in situ testing of Asian clams resulted in zero survival at five of seven AMD influenced sites prior to remediation, some clams survived at all sites after. Clam survival was found to be significantly less than upstream references at only two sites, both downstream of un-mitigated AMD seeps in 2004. An ecotoxicological rating (ETR) system that combined ten biotic and abiotic parameters was developed as an indicator of the ecological status for each study site. A comparison of ETRs from before and after remediation demonstrated that all sites downstream of the remediation had experienced some level of recovery. Although the remediation has improved the ecological health of Ely Creek, un-mitigated AMD discharges are still negatively impacting the watershed.  相似文献   

2.
Acid mine drainage (AMD) is a common result of coal and metal mining worldwide caused by weathering of metal sulfides exposed during mining. AMD typically results in low-pH, high-metal, high-conductivity water that does not support aquatic life. Chemical water quality improvement does not necessarily lead to rapid biological recovery. Little Raccoon Creek, a major tributary to Raccoon Creek in the Western Allegheny Plateau of Ohio, drains 401 km2, has a legacy of AMD that stems from mining activities over more than a century. Since 1999, seven major passive treatments systems have been installed in the watershed to a total of over $6.5 million. This study analyzes the hourly water quality data collected at a United States Geological Survey gage station alongside trends in fish and macroinvertebrate communities. Both fish and macroinvertebrate communities have shown a statistically significant improvement in the lower reaches of Little Raccoon Creek since treatment began. Long-term chemical monitoring shows a significant increase in pH, but no significant change in conductivity. The conductivity data is well correlated with sulfate concentrations and discharge, while the pH is well correlated with net  alkalinity data, but not with discharge. Significant investment in passive treatment systems and land reclamation has decreased the percent occurrence of pH measurements below the target of 6.5 and has led to recovery of both fish and macroinvertebrate communities in the downstream reaches of Little Raccoon Creek. Long-term monitoring has proven to be a valuable tool to assess success of a high-cost remediation program.  相似文献   

3.
The Clean Water Act presents a daunting task for states by requiring them to assess and restore all their waters. Traditional monitoring has led to two beliefs: (1) ad hoc sampling (i.e., non-random) is adequate if enough sites are sampled and (2) more intensive sampling (e.g., collecting more organisms) at each site is always better. We analyzed the 1,500 Maryland Biological Stream Survey (MBSS) random sites sampled in 2000–2004 to describe the variability of Index of Biotic Integrity (IBI) scores at the site, reach, and watershed scales. Average variability for fish and benthic IBI scores increased with increasing spatial scale, demonstrating that single site IBI scores are not representative at watershed scales and therefore at best 25% of a state’s stream length can be representatively sampled with non-random designs. We evaluated the effects on total taxa captured and IBI precision of sampling for twice as many benthic macroinvertebrates at 73 MBSS sites with replicate samples. When sampling costs were fixed, the precision of the IBI decreased as the number of sites had to be reduced by 15%. Only 1% more taxa were found overall when the 73 sites where combined. We concluded that (1) comprehensive assessment of a state’s waters should be done using probability-based sampling that allows the condition across all reaches to be inferred statistically and (2) additional site sampling effort should not be incorporated into state biomonitoring when it will reduce the number of sites sampled to the point where overall assessment precision is lower.  相似文献   

4.
Direct measurement of the accumulation of non-radioactive traceelements in aquatic biota near uranium mining or processing sites has been relatively rare, with greater focus on the radiological activity in the adjacent soils and groundwater. To evaluate the potential ecological concern associated with trace elements at a former uranium mill site in southeasternUtah, benthic macroinvertebrates were collected and analyzed for 17 trace elements from multiple locations within a small on-site stream, Montezuma Creek, and a nearby reference stream. Key questions of this study relate to the spatial and temporalextent of contamination in aquatic biota, the potential ecological risks associated with that contamination, and the usefulness of benthic macroinvertebrates as a monitoring tool at this site. Composite samples of similar macroinvertebrate taxa and functional feeding groups were collected from each site over atwo year period that was representative of normal and dry-yearconditions. In both years, mean concentrations of arsenic,molybdenum, selenium, and vanadium were significantly higher (afactor of 2–4 times; P < 0.05) in macroinvertebrates collectedfrom one or both of the two Montezuma Creek sites immediatelydownstream of the mill tailing site in comparison toconcentrations from reference locations. Mean uraniumconcentrations in invertebrates immediately downstream of themill site were more than 10 times higher than at reference sites.The site-to-site pattern of contamination in Montezuma Creekinvertebrates was similar in 1995 and 1996, with mill-relatedtrace elements showing a downstream decreasing trend. However,nine of seventeen contaminant concentrations were higher in thesecond year of the study, possibly due to a higher influx of deepgroundwater during the drier second year of the study. Apreliminary assessment of ecological risks, based on the benthicmacroinvertebrate bioaccumulation data, suggests that aquatic andterrestrial population risks are low. Benthic macroinvertebratesappeared to be sensitive integrators of trace element inputs tothe aquatic environment from a former uranium mill tailing site,and provided useful spatial and temporal patterns ofcontamination not easily obtained using conventional surfacewater or groundwater measures.  相似文献   

5.
This study was designed to determine whether survivorship and growth of Asian clams (Corbicula fluminea [Müller]) differed significantly between two types of field enclosures. Enclosures were either flexible mesh bags or rigid cages (hereto after referred as bioboxes) designed to homogenize substrate among study sites and accommodate Asian clam feeding mechanisms. For 96d, cages remained at 12 Clinch River (CR), Hurricane Fork (HF), and Dump's Creek (DC) sites upstream and downstream of a coal-fired power plant discharge, coal mining effluent, and coal combustion-related disposal facilities in Carbo, Virginia. Although survivorship was not significantly different between cage types, mean growth of clams in bioboxes was significantly greater overall (p = 0.0157). Despite the difference in growth between the two cage types, both confirmed significant reductions of survivorship and growth directly below the power plant discharge. Additionally, coefficient of variance values for biobox growth data were reduced at most study sites (averages of 16% for bioboxes versus 19% for mesh bags). Our results have implications toward strengthening weight-of-evidence approaches used to link impairment of transplanted bivalves to environmental contaminants. More importantly, these results suggest that ecotoxicological impairment of bivalves transplanted downstream of the coal-fired power plant discharge functioned independently of site-specific substrate provisions.  相似文献   

6.
The relationship between benthic macroinvertebrate assemblages and cattle density was assessed from fall 2002 through spring 2004 in five small streams that represented a gradient of cattle grazing intensity. All study stream reaches were in pasture with no woody riparian vegetation, but varied in the intensity of cattle grazing (0 cattle ha−1 at site 1 to 2.85 cattle ha−1 at site 5). Regression analysis indicated highly significant and strong macroinvertebrate metric responses to cattle density during most sampling periods. The majority of metrics responded negatively to increased grazing, while a few (total taxa richness, number of sensitive taxa, and % collector filterers) increased along the gradient before declining at the most heavily grazed sites. Total number of sensitive taxa and % Coleoptera had the strongest relationship with cattle density throughout the study period. During some sampling periods, nearly 80% of the variation in these metrics was explained by cattle density. The elmid beetle, Oulimnius, had a particularly strong negative response to the grazing gradient. Study site groupings based on taxa composition, using detrended correspondence analysis (DCA), indicated that benthic samples collected from the reference site and light rotational grazing site were more similar in macroinvertebrate taxa composition than samples collected from the intermediate grazing and heavy grazing sites. Our findings demonstrate that biological integrity, as measured by benthic macroinvertebrate metrics and assemblage composition, is highly related to cattle density in small streams in the Blue Ridge mountains, Virginia, USA. This suggests that the degree of agricultural intensity should be given consideration in stream assessments, as well as land use planning and regulatory decisions.  相似文献   

7.
Water quality monitoring data are usually used independently to report on the condition of streams and watersheds. For example, watersheds are often rated as good, fair, or poor with regard to a single stressor or with regard to an index of biotic integrity. The utility of monitoring data may be enhanced by integrating stressor-response information with the observed stressor data, and reporting stressor levels in terms of their relative effects upon valued ecological resources. We estimated stressor-response relationships at the regional scale using data collected in the Eastern Cornbelt Plains Ecoregion of Ohio. Generalized additive models were used to visualize stressor-response relationships. Piecewise linear functions and simple linear functions were then used to parameterize the observed responses. Parameters derived from the regional models were used to scale observations of stressors in the Big Darby Creek watershed, OH. After scaling, stressors were compared in terms of their spatial distribution and in terms of the severity with which they influenced the biological endpoint of interest. Stressors most strongly associated with the current ecological condition of the watershed were identified. In the Big Darby Creek watershed, decreases in substrate quality were associated with the most severe decrements in biological condition. At smaller decrements in biological condition, three stressors were important: substrate quality, riparian quality, and increased concentrations of NOx.  相似文献   

8.
Contamination of nutrients and heavy metals within aquatic system is of great concern due to its potential impact on human and animal health. The Grand Canal of China, the largest artificial river in the world, is of great importance in supplying water resource, transporting cargo, and recreating resident, as well as great historical heritage. This study assessed and examined the impact of human activities on characters of contamination distribution within the section of the Canal in Taihu watershed. Physicochemical parameters of surface water quality were determined monthly from the year 2004 to 2006 at 11 sites that were influenced by different anthropogenic activities along the Canal. Moreover, contaminations at surface sediments (20 cm) at the same locations were also analyzed in September 2006. Results showed that the Canal had been seriously polluted, which was characterized with high spatial variations in contaminations distribution. The sites influenced mainly by industry and urbanization showed higher contents of nutrients and lower levels of dissolve oxygen than other sites. Concentrations of nitrogen at all studied sites exceeded the worst level of surface water quality according to the National Criterion of Surface Water Quality, China, with the average values varying from 2.27 to 10.34 mg/L. Furthermore, the site influenced mainly by industry (i.e., Site 4) presented the highest contents of cadmium (3.453 mg/kg), chromium (196.87 mg/kg), nickel (87.12 mg/kg), zinc (381.8 mg/kg), and copper (357.32 mg/kg). While sites in vicinity to cities had presented relatively higher contents of metals, especially for the site located downstream of Changzhou City (Site 3) had presented the highest contents of mercury (1.64 mg/kg) and lead (197.62 mg/kg). Copper at Sites 2 to 6, Nickel at Sites 2 to 9 except for Site 7, chromium, lead, and zinc at Sites 3 to 6 had exceeded New York State Department of Environmental Conservation (NYSDEC) Severe Effect Level (SEL). By multivariate statistical, nutrient variables, companied with V-phen, had contributed the most variation of water quality, while nutrient and metals had explained the most part of total variance of contaminations in sediment. This study indicated that the canal had been polluted severely and urgently need to control.  相似文献   

9.
Two cage designs and fingernail clams(Sphaerium fabale) were evaluated for theirsuitability for use in in situ bioassays toassess the ecological condition of a stream andpredict ecological recovery potential. One design(referred to as tray design) was a modified plastictray about one-fourth full of small gravels andcovered with 1 mm fiberglass mesh. The second design(referred to as tube-plates) consisted of shortplexiglass tubes about one-third full of small gravelsand attached horizontally to a plexiglass plate. Oneend of each tube faced into the current; both endswere covered with mesh. Cages containing clams weredeployed at reference and impacted (test) sites forperiods of 70 to 135 d. Growth and survival were theprimary endpoints evaluated, but the tube-platesallowed isolation of individual clams so that natalityalso could be evaluated as an endpoint. Results ofbenthic macroinvertebrate surveys, performed foranother study, were included to help validate bioassayresults. Both cage designs yielded good quantitative,site-specific results for clam survival and growth;results for natality, though, were less conclusive. Clam survival and growth results were in good generalagreement with the results for the benthicmacroinvertebrate community surveys. At a site wherethe macroinvertebrate community was the mostdepauperate, clam mortality was always rapid. At asite where the condition of the macroinvertebratecommunity was only slightly less impacted than themost impacted site, clam growth was almost alwayssignificantly lower than at reference sites. Survivalof clams was significantly reduced in <25 d at thissite in some trials, but in other trials there waslittle mortality. At a minimally impacted site, clamsurvival was similar to that found at reference sites,and differences in clam growth were not detectableuntil after 40 to 50 d of exposure. The tube-platedesign was easier to use, allowed more flexibility inselection of response parameters, and required lesshandling time of test animals, thus, this was thepreferred design. Our results demonstrated thateither in situ bioassay design can be used toaugment monitoring and assessment programs. Their useas a predictor of ecological recovery, however,requires further evaluation.  相似文献   

10.
The spatial congruence of chemical and biological recovery along an 18-km acid mine impaired stream was examined to evaluate the efficacy of treatment with an alkaline doser. Two methods were used to evaluate biological recovery: the biological structure of the benthic macroinvertebrate community and several ecosystem processing measures (leaf litter breakdown, microbial respiration rates) along the gradient of improved water chemistry. We found that the doser successfully reduced the acidity and lowered dissolved metals (Al, Fe, and Mn), but downstream improvements were not linear. Water chemistry was more variable, and precipitated metals were elevated in a 3–5-km “mixing zone” immediately downstream of the doser, then stabilized into a “recovery zone” 10–18 km below the doser. Macroinvertebrate communities exhibited a longitudinal pattern of recovery, but it did not exactly match the water chemistry gradient Taxonomic richness (number of families) recovered about 6.5 km downstream of the doser, while total abundance and % EPT taxa recovery were incomplete except at the most downstream site, 18 km away. The functional measures of ecosystem processes (leaf litter breakdown, microbial respiration of conditioned leaves, and shredder biomass) closely matched the measures of community structure and also showed a more modest longitudinal trend of biological recovery than expected based on pH and alkalinity. The measures of microbial respiration had added diagnostic value and indicated that biological recovery downstream of the doser is limited by factors other than habitat and acidity/alkalinity, perhaps episodes of AMD and/or impaired energy/nutrient inputs. A better understanding of the factors that govern spatial and temporal variations in acid mine contaminants, especially episodic events, will improve our ability to predict biological recovery after remediation.  相似文献   

11.
铬渣对中国地下水、地表水和土壤造成了严重污染,并对生态环境和人体健康构成了巨大威胁。开展对铬渣污染场地的修复工作已迫在眉睫。在分析铬污染特性的基础上,阐述了国内外最新铬污染场地修复技术研究动态,并概括分析了其不足与未来铬渣污染场地修复技术的发展趋势。  相似文献   

12.
Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.  相似文献   

13.
Effective water resources management programs have always incorporated detailed analyses of hydrological and water quality processes in the upland watershed and downstream waterbody. We have integrated two powerful hydrological and water quality models (SWAT and CE-QUAL-W2) to simulate the combined processes of water quantity and quality both in the upland watershed and downstream waterbody. Whereas the SWAT model outputs water quality variables in its entirety, the CE-QUAL-W2 model requires inputs in various pools of organic matter contents. An intermediate program was developed to extract outputs from SWAT at required subbasin and reach outlets and converts them into acceptable CE-QUAL-W2 inputs. The CE-QUAL-W2 model was later calibrated for various hydrodynamic and water quality simulations in the Cedar Creek Reservoir, TX, USA. The results indicate that the two models are compatible and can be used to assess and manage water resources in complex watersheds comprised of upland watershed and downstream waterbodies.  相似文献   

14.
The proposed removal of three run-of-river dams (all ≤5-m height) in eastern Pennsylvania along lower Bushkill Creek, a tributary of the Delaware River, has provided a valuable opportunity for multidisciplinary research involving the collection of more than 5 years of pre-removal monitoring data, analysis of heavy metals in legacy sediment cores, and associated toxicity assays to determine the singular and interactive effects of lead, copper, and cadmium on survival and behavior of a common macroinvertebrate found in Bushkill Creek. Monitoring data were collected from sites approximately 35 m upstream and downstream of dams and reference sites located approximately 5 km upstream of all dams. Results indicate that oxygen levels, macroinvertebrate diversity, and proportion of sensitive taxa were significantly lower upstream and downstream of dams in comparison with upstream reference reaches. The strong correlation between water quality and macroinvertebrates in this system implies that removal of the lower three dams would lead to improvements in water quality, biotic integrity, and resilience in lower Bushkill Creek. Sediment analyses and toxicity assays suggest that dam removal and sediment mobilization may route contaminated sediments downstream at concentrations that may harm more sensitive biota. However, macroinvertebrate mortality and behavior were not significantly different from clean water controls for the large majority of toxicity assays. All together, these results suggest that dams 1–3 are good candidates for successful stream restoration but that the removals would best be planned in a way that mitigates potential impacts of contaminated legacy sediment.  相似文献   

15.
A combination of toxicity tests, chemical analyses, andToxicity Identification Evaluations (TIEs) were used toinvestigate receiving water toxicity in the Calleguas Creekwatershed of southern California. Studies were conductedfrom 1995 through 1999 at various sites to investigatecauses of temporal variability of toxicity throughout thissystem. Causes of receiving water toxicity varied by siteand species tested. Investigations in the lower watershed(Revolon Slough, Santa Clara Drain, Beardsley Wash)indicated that toxicity of samples to the cladoceran Ceriodaphnia dubia due to elevated concentrations ofthe organophosphate pesticide chlorpyrifos, while causes ofintermittent toxicity to fathead minnows (Pimephalespromelas) and the alga Selanastrum capricornutum wereless clear. Investigations at sites in the middle and upperreaches of the watershed (Arroyo Simi and Conejo Creek)indicated that the pesticide diazinon was the probable causeof receiving water toxicity to Ceriodaphnia. Elevatedammonia was the cause of toxicity to fathead minnows in theupper watershed sites. Results of these and previousstudies suggest that biota are impacted by degraded streamquality from a variety of point and non-point pollutionsources in the Calleguas Creek watershed. Water qualityresource manager's efforts to identify contaminant inputsand implement source control will be improved with thefindings of this study.  相似文献   

16.
在调查分析伊犁低山丘陵区水土流失特点的基础上,研究了该区小流域水土保持措施的空间配置。结果表明:伊犁低山丘陵区水土流失主要表现为以水力侵蚀为主的多种土壤侵蚀类型作用下的坡面侵蚀和沟道侵蚀。针对其水土流失特点,伊犁低山丘陵区小流域水土保持措施优化配置为:以生态修复为主,上游地区封禁保护;中游地区种植水保林和经济林带,建立生态缓冲带;下游水平沟种草。通过综合治理开展水土保持生态环境建设,至2012年底,伊犁低山丘陵区治理程度达到77.33%,林草覆盖率48%,改善了当地生态环境。  相似文献   

17.
The purpose of this study was to evaluate the impact of acid mine drainage on the chemistry and the macrobenthos of the Carolina stream (San Luis – Argentina). Samples were obtained in the years 1997–1998 at two sites: site C1, located 200 m upstream of the drainage, and site C2, located 800 m downstream. The system buffer capacity was evaluated in the non – contaminated site by means of the buffer index calculation. The physico – chemical changes observed as a consequence of the contribution of acid mine drainage (AMD) were: a decreasing of pH and an increase in the ionic concentration, especially sulfate and Fe coming from the oxidation produced by chemiolithotrophic bacteria. The values obtained indicated a low buffer capacity and a high intrinsic vulnerability of the system to resist the impact originated by the AMD, producing a remarkable decreasing of pH of the receiving stream. These changes caused modifications in the original benthic community that was replaced by organisms more tolerant to the acid stress. A reduction in the abundance and in the taxonomic richness of the benthic macroinvertebrates was observed when compared with the reference station. An increase in the proportion of Chironomidae and of Acari and a decrease in the proportion of the remaining taxa were observed. The most sensitive groups were Ephemeroptera, Trichoptera and Mollusca. The community was mostly affected by the following variables: pH, conductivity, sulfate and dissolved total Fe.  相似文献   

18.
We used boosted regression trees (BRT) to model stream biological condition as measured by benthic macroinvertebrate taxonomic completeness, the ratio of observed to expected (O/E) taxa. Models were developed with and without exclusion of rare taxa at a site. BRT models are robust, requiring few assumptions compared with traditional modeling techniques such as multiple linear regression. The BRT models were constructed to provide baseline support to stressor delineation by identifying natural physiographic and human land use gradients affecting stream biological condition statewide and for eight ecological regions within the state, as part of the development of numerical biological objectives for California’s wadeable streams. Regions were defined on the basis of ecological, hydrologic, and jurisdictional factors and roughly corresponded with ecoregions. Physiographic and land use variables were derived from geographic information system coverages. The model for the entire state (n?=?1,386) identified a composite measure of anthropogenic disturbance (the sum of urban, agricultural, and unmanaged roadside vegetation land cover) within the local watershed as the most important variable, explaining 56 % of the variance in O/E values. Models for individual regions explained between 51 and 84 % of the variance in O/E values. Measures of human disturbance were important in the three coastal regions. In the South Coast and Coastal Chaparral, local watershed measures of urbanization were the most important variables related to biological condition, while in the North Coast the composite measure of human disturbance at the watershed scale was most important. In the two mountain regions, natural gradients were most important, including slope, precipitation, and temperature. The remaining three regions had relatively small sample sizes (n?≤?75 sites) and had models that gave mixed results. Understanding the spatial scale at which land use and land cover affect taxonomic completeness is imperative for sound management. Our results suggest that invertebrate taxonomic completeness is affected by human disturbance at the statewide and regional levels, with some differences among regions in the importance of natural gradients and types of human disturbance. The construction and application of models similar to the ones presented here could be useful in the planning and prioritization of actions for protection and conservation of biodiversity in California streams.  相似文献   

19.
20.
A screening-level assessment of dissolved zinc from inactive and abandoned metal mines in the Cement Creek Basin was performed. The basin is part of the Upper Animas River Basin in the San Juan Mountains of southwestern Colorado. Stream discharge and dissolved zinc concentrations were measured at 49 stations below nonpoint sources including tailings and waste rock, point sources such as adits, and background areas. One measurement was made at a station during three flow events: storm runoff, peak snowmelt runoff, and baseflow. The highest concentrations occurred in the upper part of the basin immediately downstream from nonpoint and point source discharges, especially in the North Fork of Cement Creek. The mean concentration in Cement Creek was highest during baseflow (1350 g l-1) and lowest during snowmelt (796 g l-1). Most exceedances of national acute and chronic criteria for brown trout were chronic criteria exceedances in the upper part of the basin. Subareas with the greatest extent of nonpoint source areas in the upper part of the watershed, especially those contributing to Upper Cement Creek and the North Fork of Cement Creek, generally had the highest loadings and unit area loadings. The greatest loadings from all subareas to Cement Creek occurred during snowmelt (219 000 g day-1 and 17 400 kg for the snowmelt season). The highest unit area loadings from all subareas also occurred during snowmelt (190 g ha-1 day-1 and 15 147 g ha-1 for the snowmelt season). Loadings from subareas with extensive nonpoint source areas were always much greater than those from point sources and background areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号