首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 80 毫秒
1.
Environmental or hydrological landscape units can integrate various environmental characteristics to support proper management of natural resources. To delineate these units, quantitative methods such as ordination, clustering, and classification of abiotic factor information are used. In the present work, environmental units were delineated in the Duero River watershed of Michoacán, Mexico. This will enhance understanding of the hydrologic landscape, which is a fundamental to natural resource management. A digital elevation model was used to generate sub-basins. Climatic data were obtained from 16 meteorological stations. Sixty-nine soil and 150 water samples were collected and analyzed in the laboratory. Geostatistical methods for spatial prediction of the environmental variables were used. Mean data for each sub-basin were obtained from the environmental variable grids, generating an abiotic factor data matrix. A multivariate analysis was conducted. Exponential, linear, spherical, and Gaussian models were fit to an empirical variogram. Spatial prediction of the environmental data was done via universal and ordinary kriging. Based on principal component analysis, abiotic factors evaporation, total nitrogen, soil pH, and sodium absorption ratio of water were selected for cluster analysis. Five environmental units were delineated in the Duero watershed. One environmental unit (number 4) provided greater than 50 % of the payment for ecosystem services. The general trend is an increase of urban area. The urban surface in 1983 and 2014 was 1724 and 4750 ha, respectively, an increase of 275 %. Environmental unit 1 showed the greatest urban area growth (1336 ha) during the latter period.  相似文献   

2.
Research on relationships between dissolved nutrients and land-use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-basins for 3 years to test for associations with land-use. Nutrient concentrations were analyzed for spatial and seasonal patterns and for relationships with land-use and stream discharge. Ortho-P and DN were higher in lower-elevation sub-basins dominated by poorly drained soils and agricultural production compared with higher-elevation sub-basins dominated by well-drained soils and forests. Eight lower basins had at least one sample period with nitrate-N?>?10 mg L?1. The Calapooia River had lower concentrations of dissolved nutrients compared with lower sub-basins, often by an order of magnitude. Dissolved organic N represented a greater proportion of DN in the upper forested sub-basins. Seasonal nutrient concentrations had strong positive correlations to the percent of a sub-basin that was managed for agriculture in all seasons (p?values?≤?0.019) except summer. Results suggest that agricultural lands are contributing to stream nutrient concentrations. However, poorly drained soils in agricultural areas may also contribute to the strong relationships that we found between dissolved nutrients and agriculture.  相似文献   

3.
为精准治理流域非点源氮磷污染,基于SWAT模型,运用本地区第二次全国污染源普查数据和2000—2019年流域水文、水质数据,开展湘江永州流域非点源氮磷污染模拟。结果表明:湘江永州流域建立的SWAT模型具有较好的模拟效果,流域2005—2019年的总氮月均污染负荷为383.40~17 998.70 t/m;总磷月均污染负荷为64.62~567.86 t/m,总氮和总磷各月污染负荷均与各月降雨量呈显著相关关系;农田和林地是本流域总氮、总磷污染负荷总量最大的2种用地类型,但两者之间单位面积输出的污染负荷强度却相反,林地对流域水污染防控具有正面效应,农田种植面源污染是非点源氮磷污染治理的重点。  相似文献   

4.
The Catskill/Delaware reservoirs supply 90% of New York City’s drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication as an EPA document.  相似文献   

5.
Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (?42.6 % pasture/grassland and ?57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time.  相似文献   

6.
Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240–541 μS·cm???1 more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg·l???1 during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19–0.42 mg·l???1 more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg·l???1).  相似文献   

7.
Chemical monitoring of water quality on a total of 16 rivers in the Azores archipelago (Portugal), since 2003, made it possible to identify the major pressures and spatial geochemical variations along main course of the rivers. River water pollution is to a large extent associated to point sources, namely domestic wastewater discharges, especially in urban areas, and diffuse sources, associated with pasture land, and explain the high values on BOD(5) and nutrients (P and N). Heavy metals and metalloids, as well as hydrocarbons and pesticides, are generally under the detection limits of the analytical methods. Generally, river water reflects pollution loads according to a simple model, derived from land use in the watershed: in the upper part conditions are pristine, in the intermediate portion of the basin pasture land dominates and near the coast urban discharges are increasingly important. Results stress the role that an approach based on the watershed scale, coupled with land use management measures, are crucial to water management procedures and a successful WFD implementation in small river basin districts like the Azores. The paper also shows the need for full compliance regarding EU directives on urban wastewater and nitrate pollution due to agriculture.  相似文献   

8.
The amount of pollution from nonpoint sources flowing in the streams of the Wujiang River watershed in Guizhou Province, SW China, is estimated by a geographic information system (GIS)-based method using rainfall, surface runoff and land use data. A grid of cells of 100 m in size is laid over the landscape. For each cell, mean annual surface runoff is estimated from rainfall and percent land use, and expected pollutant concentration is estimated from land use. The product of surface runoff and concentration gives expected pollutant loading from that cell. These loadings are accumulated going downstream to give the expected annual pollutant loadings in streams and rivers. By dividing these accumulated loadings by the similarly accumulated mean annual surface runoff, the expected pollutant concentration from nonpoint sources is determined for each location in a stream or river. Observed pollutant concentrations in the watershed are averaged at each sample point and compared to the expected concentrations at the same locations determined from the grid cell model. In general, annual nonpoint source nutrient loadings in the Wujiang River watershed are seen to be predominantly from the agricultural and meadow areas. The total annual loadings through the outlet of the watershed are 40,309 and 2,607 tons for total nitrogen (TN) and total phosphorus (TP), respectively.  相似文献   

9.
Quantifying changes in the cover of river-floodplain systems can provide important insights into the processes that structure these landscapes as well as the potential consequences to the ecosystem services they provide. We examined net changes in 13 different aquatic and floodplain land cover classes using photo interpreted maps of the navigable portions of the Upper Mississippi River (UMR, above the confluence with the Ohio River) and Illinois River from 1989 to 2000 and from 2000 to 2010. We detected net decreases in vegetated aquatic area in nearly all river reaches from 1989 to 2000. The only river reaches that experienced a subsequent recovery of vegetated aquatic area from 2000 to 2010 were located in the northern portion of the UMR (above navigation pool 14) and two reaches in the Illinois River. Changes on the floodplain were dominated by urban development, which increased in nearly every river reach studied from 1989 to 2000. Agricultural lands declined in most river reaches from 2000 to 2010. The loss of agricultural land cover in the northern UMR was accompanied by increases in forest cover, whereas in the lower UMR and Illinois River, declines in agriculture were accompanied by increases in forest and shallow marsh communities. The changes in aquatic vegetation occupied between 5 and 20% of the total aquatic area and are likely associated with previously reported regional improvements in water clarity, while smaller (1–15% of the total floodplain area) changes in anthropogenic land cover types on the floodplain are likely driven by broad-scale socio-economic conditions.  相似文献   

10.
The Chillán River in Central Chile plays a fundamental role in local society, as a source of irrigation and drinking water, and as a sink for urban wastewater. In order to characterize the spatial and temporal variability of surface water quality in the watershed, a Water Quality Index (WQI) was calculated from nine physicochemical parameters, periodically measured at 18 sampling sites (January–November 2000). The results indicated a good water quality in the upper and middle parts of the watershed. Downstream of the City of Chillán, water quality conditions were critical during the dry season, mainly due to the effects of the urban wastewater discharge. On the basis of the results from a Principal Component Analysis (PCA), modifications were introduced into the original WQI to reduce the costs associated with its implementation. WQIDIR2 and WQIDIR, which are both based on a laboratory analysis (Chemical Oxygen Demand) and three (pH, temperature and conductivity), respectively, four field measurements (pH, temperature, conductivity and Dissolved Oxygen), adequately reproduce the most important spatial and temporal variations observed with the original index. They are proposed as useful tools for monitoring global water quality trends in this and other, similar agricultural watersheds in the Chilean Central Valley. Possibilities and limitations for the application of the used methodology to watersheds in other parts of the world are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号