首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
A new method has been developed to determine heptachlor and its metabolites heptachlor-exo-epoxide and heptachlor-endo-epoxide in pork. The pork samples were extracted with acetone–n-hexane (2:8, V:V) and cleaned up by gel permeation chromatography and florisil solid-phase extraction cartridge. The extract was then determined by gas chromatography equipped with electron capture detector (GC-ECD), followed by validation using gas chromatography–mass spectrometry (GC–MS) with negative chemical ionization. Linearity of calibration curves ranged from 0.01 to 0.5 mg L?1, with correlation coefficients of more than 0.9980 for GC-ECD and GC–MS, respectively. At spiked concentrations of 0.01, 0.05, and 0.1 mg kg?1, the average recovery and relative standard deviation values were 87.1–102.2 and 4.0–11.3 %, respectively. The limit of quantification for each analyte was 0.01 mg kg?1, which satisfied the current maximum residue limit permitted in pork. Our results showed that the method developed was successfully used to determine heptachlor and heptachlor epoxide residues in real pork samples.  相似文献   

2.
Water quality was monitored in the Loxahatchee National Wildlife Refuge based on the Consent Decree (CDN), the Enhanced Refuge (ERN), the four-part Test impacted (FPTIN), and the four-part test unimpacted (FPTUN) networks. Alkalinity, dissolved organic carbon, total organic carbon, dissolved oxygen, total dissolved solids, total suspended solids, turbidity, pH, specific conductivity, calcium, chloride, silicon, sulfate, and total phosphorus (TP) were measured from 2005 through 2009. When the ERN was used, the 10 μg TP L?1 Consent Decree limit would have been exceeded and would have ranged from a low of 2 months in 2009 to a high of 9 months in 2005. Based on the CDN, the limit exceeded only for 1 month in each year from 2006 through 2008. Based on the FPTIN, the 10 μg TP L?1 limit would have been exceeded and would have ranged from a low of 1 month in 2007 to a high of 7 months in 2005 and 2008. Based on the CDN, the limit only exceeded for 1 month in each year from 2006 through 2008. Since TP is rapidly removed from canal water intruded into the Refuge marsh, one cannot expect a water quality sampling station located 2 km from the source to reliably detect violations. This may be the primary reason why there have been very few months when TP concentration has exceeded the limit since 1992 or part four of the four-part test annual 15 μg?L?1 limit since 2006.  相似文献   

3.
A simple, rapid, and efficient dispersive liquid–liquid microextraction method, followed by UV–Vis spectrophotometry was developed for the preconcentration and determination of Pd ions in water samples. Pd ions react with α-furildioxime (chelating agent) to form a hydrophobic complex. Various parameters were altered to study and optimize their effects on the extraction efficiency, such as pH, ligand concentration, the type and volume of extraction and dispersive solvents, extraction time, and salt concentration. Under optimized conditions, the method exhibited an enrichment factor (C org/C aq) of 25 and recovery more than 98 % within a very short extraction time. The linearity of the method ranged from 10 to 200 μg?L?1. The limit of detection was 1.1 μg?L?1. The relative standard deviation for the concentration of 100 μg?L?1 of Pd was 2.3 % (n?=?10). Finally, the developed method was successfully applied to the extraction and determination of Pd in tap, river, mineral, and sea water samples.  相似文献   

4.
5.
The present study reports on the application of modified groundnut shell as a new, easily prepared, and stable sorbent for the extraction of trace amount of Cr(III) in aqueous solution. 2-Hydroxybenzaldiminoglycine was immobilized on groundnut shells in alkaline medium and then used as a solid phase for the column preconcentration of Cr(III). The elution was carried out with 3 mL of 2 mol?L?1 HCl. The amount of eluted Cr(III) was determined by spectrophotometry using cefaclor as a complexing reagent and by flame atomic absorption spectrometry (FAAS). Different experimental variables such as pH, amount of solid sorbent, volume and concentration of eluent, sample and eluent flow rate, and interference of other metal ions on the retention of Cr(III) were studied. Under the optimized conditions, the calibration curves were found to be linear over the concentration range of 13–104 and 10–75 μg?L?1 with a detection limit of 3.64 and 1.24 μg?L?1 for spectrophotometric method and FAAS, respectively. An enrichment factor of 200 and RSD of ±1.19–1.49 % for five successive determinations of 25 μg?L?1 were achieved. The column preconcentration was successfully applied to the analysis of tap water and underground water samples.  相似文献   

6.
A new spectrophotometric method is reported for the determination of nanomolar level of malachite green in surface water samples. The method is based on the catalytic effect of silver nanoparticles on the oxidation of malachite green by hexacyanoferrate (III) in acetate–acetic acid medium. The absorbance is measured at 610 nm with the fixed-time method. Under the optimum conditions, the linear range was 8.0?×?10?9–2.0?×?10?7?mol?L?1 malachite green with a correlation coefficient of 0.996. The limit of detection (S/N?=?3) was 2.0?×?10?9?mol?L?1. Relative standard deviation for ten replicate determinations of 1.0?×?10?8?mol?L?1 malachite green was 1.86 %. The method is featured with good accuracy and reproducibility for malachite green determination in surface water samples without any pre-concentration and separation step.  相似文献   

7.
A novel and robust method for the simultaneous determination of lead, cadmium, arsenic, and nickel in atmospheric particulate matter by multi-element electrothermal atomic absorption spectrometry was developed, using zirconium–iridium coating as permanent modifier (140 μg Zr and 4 μg Ir). After 300 atomization cycles, it was necessary to add 2 μg of Ir. Due to the varying concentrations of Pb in atmospheric particulate matter, lead was monitored at two wavelengths, at the less sensitive line of 261.4 nm for high concentration samples (>20 μg?L?1) or at 283.3 nm for the low concentration samples. Matrix-matched calibration had to be performed for quantitative recoveries (96–102 %). Following this approach, the four elements were determined in atmospheric particulate matter samples from an industrial area near the city of Athens in two different time periods (cold–warm) with limits of detection of 5.5 ng?m?3 for Pb at 261.4 nm and 0.29 ng?m?3 at 283.3 nm, 0.019 ng?m?3 for Cd, 0.14 ng?m?3 for As, and 0.22 ng?m?3 for Ni. Lead, Cd, and As levels were very low, whereas Ni content was at comparable levels with other areas worldwide.  相似文献   

8.
This paper highlights the levels of anions (nitrate, nitrite, sulfate, bromide, chloride, and fluoride) and cations (potassium, sodium, magnesium, and calcium) in selected springs and groundwater sources in the urban-west region of Zanzibar Island. The levels of total dissolved solids (TDS) and sodium adsorption ratio (SAR) were also studied. Thirty water samples were collected in December 2012 from various types of water sources, which included closed hand-dug wells (CHDW), open hand-dug wells (OHDW), springwater (SW), public bore wells (PBW), and bore wells owned by private individuals (BWP), and analyzed after filtration and sometimes dilution. The cations were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). The anions were analyzed by chemically suppressed ion chromatography (IC). The ranges of the levels of the investigated parameters were as follows: Na 13.68–3,656 mg L?1, K 2.66–583 mg L?1, Mg 0.63–131.10 mg L?1, Ca 16.79–189.9 mg L?1, Cl? 8.61–4,340.97 mg L?1, F? 0–1.02 mg L?1, Br? 0–10.88 mg L?1, NO3 ? 0.18–342.4 mg L?1, NO2 ? 0–1.39, SO4 2? 4.43–534.02 mg L?1, TDS 7–6,380 mg L?1, and SAR 0.63–50. Except fluoride, most of the studied parameters in the water samples had concentrations beyond the permissible limits of the World Health Organization (WHO). The elevated concentrations are a result of seepage of contaminated water from on-site septic tanks, pit latrines, landfill leachates, fertilizer applications, and domestic effluents. These results should alert domestic water stakeholders in Zanzibar to the urgent task of initiating a quick mitigation response to control these alarming water risks.  相似文献   

9.
Forage-based cow-calf operations may have detrimental impacts on the chemical status of groundwater and streams and consequently on the ecological and environmental status of surrounding ecosystems. Assessing and controlling phosphorus (P) inputs are, thus, considered the key to reducing eutrophication and managing ecological integrity. In this paper, we monitored and evaluated P concentrations of groundwater (GW) compared to the concentration of surface water (SW) P in forage-based landscape with managed cow-calf operations for 3 years (2007–2009). Groundwater samples were collected from three landscape locations along the slope gradient (GW1 10–30 % slope, GW2 5–10 % slope, and GW3 0–5 % slope). Surface water samples were collected from the seepage area (SW 0 % slope) located at the bottom of the landscape. Of the total P collected (averaged across year) in the landscape, 62.64 % was observed from the seepage area or SW compared with 37.36 % from GW (GW1?=?8.01 %; GW2?=?10.92 %; GW3?=?18.43 %). Phosphorus in GW ranged from 0.02 to 0.20 mg L?1 while P concentration in SW ranged from 0.25 to 0.71 mg L?1. The 3-year average of P in GW of 0.09 mg L?1 was lower than the recommended goal or the Florida’s numeric nutrients standards (NNS) of 0.12 mg P L?1. The 3-year average of P concentration in SW of 0.45 mg L?1 was about fourfold higher than the Florida’s NNS value. Results suggest that cow-calf operation in pasture-based landscape would contribute more P to SW than in the GW. The risk of GW contamination by P from animal agriculture production system is limited, while the solid forms of P subject to loss via soil erosion could be the major water quality risk from P.  相似文献   

10.
In this study, water samples were collected from 86 water treatment plants for analysis of haloacetic acids (HAAs) and trihalomethanes (THMs) from February to March, 2007 and from July to August, 2007. Both seasonal and geographical variations of disinfection by-products (DBPs) in drinking water of Taiwan were presented. The results showed that the five HAA concentrations (HAA5) were 1.0–38.9 μg/L in the winter and 0.2–46.7 μg/L in the summer; and the total THMs were ND-99.4 μg/L in the winter and ND-133.2 μg/L in the summer. For samples taken from the main Taiwan island, dichloroacetic acid (29.4–31.7%) and trichloroacetic acid (25.3–27.6%) were the two major HAA species, and trichloromethane was the major THM species (49.9–62.2%) in finished water. For water treatment plants located on the offshore islands outside of Taiwan, high bromide concentration was found in raw water, and higher percentage of brominated THMs and HAAs were formed in the overall formation. A statistically significant (P?<?0.005) logarithmic linear regression model was found to be useful to describe the correlations between TTHM and HAA5 or nine HAAs (HAA5?=?1.219 ×TTHM 0.754, R 2?=?0.658; HAA9?=?1.824 ×TTHM 0.735, R 2?=?0.678). No apparent difference was observed for DBPs concentrations between finished water and distribution samples in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号