首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The most important function of watersheds in the western U.S. is the capacity to retain soil and water, thereby providing stability in hydrologic head and minimizing stream sediment loads. Long-term soil and water retention varies directly with vegetation cover. Data on ground cover and plant species composition were collected from 129 sites in the Rio Grande drainage of south-central New Mexico. This area was previously assessed by classification of Advanced Very High Resolution Radiometry (AVHRR) imagery. The classification of irreversibly degraded sites failed to identify most of the severely degraded sites based on size of bare patches and 35% of the sites classified as degraded were healthy based on mean bare patch size and vegetation cover. Previous research showed that an index of unvegetated soil (bare patch size and percent of ground without vegetative cover) was the most robust indicator of the soil and water retention function. Although the regression of mean bare patch size on percent bare ground was significant (p < 0.001), percent bare ground accounted for only 11% of the variability in bare patch size. Therefore bare patch size cannot be estimated from data on percent bare ground derived from remote sensing. At sites with less than 25% grass cover, and on sites with more than 15% shrub cover, there were significant relationships between percent bare soil and mean bare patch size (p < 0.05). Several other indicators of ecosystem health were related to mean bare patch size: perennial plant species richness (r = 0.6, p < 0.0001), percent cover of increaser species (r = 0.5, p < 0.0001) and percent cover of forage useable by livestock (r = 0.62, p < 0.0001). There was no relationship between bare patch size and cover of species that are toxic to livestock. In order to assess the ability of western rangeland watersheds to retain soil and water using remote sensing, it will be necessary to detect and estimate sizes of bare patches ranging between at least 0.5 m in diameter to several meters in diameter.  相似文献   

2.
Land use change—mostly habitat loss and fragmentation—has been recognized as one of the major drivers of biodiversity loss worldwide. According to the habitat amount hypothesis, these phenomena are mostly driven by the habitat area effect. As a result, species richness is a function of both the extent of suitable habitats and their availability in the surrounding landscape, irrespective of the dimension and isolation of patches of suitable habitat. In this context, we tested how the extent of natural areas, selected as proxies of suitable habitats for biodiversity, influences species richness in highly anthropogenic landscapes. We defined five circular sampling areas of 5 km radius, including both natural reserves and anthropogenic land uses, centred in five major industrial sites in France, Italy and Germany. We monitored different biodiversity indicators for both terrestrial and aquatic ecosystems, including breeding birds, diurnal butterflies, grassland vegetation, odonata, amphibians, aquatic plants and benthic diatoms. We studied the response of the different indicators to the extent of natural land uses in the sampling area (local effect) and in the surrounding landscape (landscape effect), identified as a peripheral ring encircling the sampling area. Results showed a positive response of five out of seven biodiversity indicators, with aquatic plants and odonata responding positively to the local effect, while birds, vegetation and diatoms showed a positive response to the landscape effect. Diatoms also showed a significant combined response to both effects. We conclude that surrounding landscapes act as important biodiversity sources, increasing the local biodiversity in highly anthropogenic contexts.  相似文献   

3.
Desertification in some form is estimated to have occurred over about 42% of the 5 million km2 of arid and semiarid lands in Australia. The most common form of desertification is loss of perennial grasses from grasslands, savannas, and open woodlands, often with a replacement by inedible shrubs. Desertification continues to be a problem, especially during droughts when grazing pressures reduce ground cover, laying bare landscapes to wind and water erosion. But two national programs, Drought Alert and Landcare, are giving new hope in controlling land degradation. Both use a grassroots approach by promoting action through local pastoralist and farmer groups and by encouraging the use of effective techniques for rehabilitating landscapes. A strategic application of ponding banks and contour traps with an eye to the landscape has proven successful in stopping and reversing desertification processes.  相似文献   

4.
Landscape monitoring usually relies on land-use statistics whichreflect the share of land-sue/land cover types. In order tounderstand the functioning of landscapes, landscape pattern mustbe considered as well. Indicators which address the spatialconfiguration of landscapes are therefore needed. Thesuitability of landscape metrics, which are computed from thetype, geometry and arrangement of patches, is examined. Two casestudies in a surface mining region show that landscape metricscapture landscape structure but are highly dependent on the datamodel and on the methods of data analysis. For landscape metricsto become part of policy-relevant sets of environmentalindicators, standardised procedures for their computation fromremote sensing images must be developed.  相似文献   

5.
Land cover changes affect ecological landscape spatial pattern, and evolving landscape patterns inevitably cause an evolution in ecosystem functionality. Various ecological landscape variables, such as biological productivity (plant biomass and stock capacity), soil nutrients (organic matter and N content) and water source conservation capacity are identified as landscape function characteristics. A quantitative method and digital model for analyzing evolving landscape functionality in the headwaters areas of the Yangtze River, China were devised. In the period 1986–2000, patch transitions of the region's evolving landscapes have been predominantly characterized by alpine cold swamp meadow, with the highest coverage tending to be steppified meadow or steppe, and desertification landscape such as sand and bare rock land expansion. As the result of such changes, alpine swamp areas decreased by 3.08 × 103 km2 and the alpine cold sparse steppe and bare rock and soil land increased by 6.48 × 103 km2 and 5.82 × 103 km2, respectively. Consequently, the grass biomass production decreased by 2627.15 Gg, of which alpine cold swamp meadows accounted for 55.9% of this loss. The overall stock capacity of the headwaters area of the Yangtze River decreased by 920.64 thousand sheep units, of which 502.02 thousand sheep units decreased in ACS (Alpine cold swamp) meadow transition. Soil organic matter and N contents decreased significantly in most alpine cold meadow and swamp meadow landscape patches. From 1986 to 2000 the total losses of soil organic matter and total N in the entire headwaters region amounted to 150.2 Gkg and 7.67 Gkg. Meanwhile, the landscape soil water capacity declined by 935.9 Mm3, of which 83.9% occurred in the ACS meadow transition. In the headwater area of the Yangtze River, the complex transition of landscape resulted in sharp eco-environmental deterioration. The main indication for these changes involved the intensity of the climate in this region is becoming drier and warmer, resulting in a gradual degradation of the permafrost.  相似文献   

6.
We studied indicators of rangeland health on benchmark sites with long, well documented records of protection from stress by domestic livestock or histories of environmental stress and vegetation change. We measured ecosystem properties (metrics) that were clearly linked to ecosystem processes. We focused on conservation of soil and water as key processes in healthy ecosystems, and on maintenance of biodiversity and productivity as important functions of healthy ecosystems. Measurements from which indicators of rangeland health were derived included: sizes of unvegetated patches, cover and species composition of perennial grasses, cover and species composition of shrubs and herbaceous perennials, soil slaking, and abundance and species composition of the bird fauna. Indicators that provided an interpretable range of values over the gradient from irreversibly degraded sites to healthy sites included: bare patch index, cover of long-lived grasses, palatability index, and weighted soil surface stability index. Indicators for which values above a threshold may serve as an indicator of rangeland health include: cover of plant species toxic to livestock, cover of exotic species, and cover of increaser species. Several other indicator metrics were judged not sensitive nor interpretable. Examples of application of rangeland health indicators to evaluate the success of various restoration efforts supported the contention that a suite of indicators are required to assess rangeland health. Bird species diversity and ant species diversity were not related to the status of the sample site and were judged inadequate as indicators of maintenance of biodiversity.  相似文献   

7.
Two methods for monitoring of grassland vegetation were compared: visual estimation of plant cover (C) and plant densities counting (D). C and D were performed in monthly intervals for three vegetation growing seasons after imposing different grazing regimes on abandoned grassland in 1998. Species scores obtained from paired redundancy analyses (RDA) of C and D data were compared and Spearman's rank correlations were used to show if the two methods give comparable results. Results of C and D were highly correlated in the first two growing seasons only. In the third season, correlation was substantially lower as the sward structure was more heterogeneous due to creation of differently defoliated patches especially under extensive grazing. Presence of the same plant species with different habit in frequently and in infrequently grazed patches, reduced significance of Spearman's rank correlations. Cover estimation can fully substitute plant density counting in grassland with lower proportion of frequently and infrequently grazed patches only, but caution should be used when comparing different management regimes in long term analyses.  相似文献   

8.
Arid and semi-arid shrublands have significant biological and economical values and have been experiencing dramatic changes due to human activities. In California, California sage scrub (CSS) is one of the most endangered plant communities in the US and requires close monitoring in order to conserve this important biological resource. We investigate the utility of remote-sensing approaches—object-based image analysis applied to pansharpened QuickBird imagery (QBPS/OBIA) and multiple endmember spectral mixture analysis (MESMA) applied to SPOT imagery (SPOT/MESMA)—for estimating fractional cover of true shrub, subshrub, herb, and bare ground within CSS communities of southern California. We also explore the effectiveness of life-form cover maps for assessing CSS conditions. Overall and combined shrub cover (i.e., true shrub and subshrub) were estimated more accurately using QBPS/OBIA (mean absolute error or MAE, 8.9 %) than SPOT/MESMA (MAE, 11.4 %). Life-form cover from QBPS/OBIA at a 25?×?25 m grid cell size seems most desirable for assessing CSS because of its higher accuracy and spatial detail in cover estimates and amenability to extracting other vegetation information (e.g., size, shape, and density of shrub patches). Maps derived from SPOT/MESMA at a 50?×?50 m scale are effective for retrospective analysis of life-form cover change because their comparable accuracies to QBPS/OBIA and availability of SPOT archives data dating back to the mid-1980s. The framework in this study can be applied to other physiognomically comparable shrubland communities.  相似文献   

9.
Ecological security has become so important that it will affect the national security and social sustainable development. In this paper, a case study on the ecological security indexes of modern oasis landscapes in Beitun Oasis, Xinjiang, was carried out. The spatial neighbouring parameters, such as the contiguous length, measure of area and patch quantity of oasis landscape patches, affected by desert landscape patches were calculated by using GIS-based buffer analysis, the method of calculating ecological security indexes of oasis landscape was developed, and the dynamic changes of patterns and ecological security indexes of the oasis landscapes since recent 30 years were analyzed. The results showed that soil salinization or alkalization and paludification were major factors affecting the ecological security in Beitun Oasis. Therefore, measures should be taken actively to prevent and control secondary salinization and paludification. The ecological security indexes of the oasis landscape in 1972, 1990 and 2005 were 78.91, 82.28 and 83.86, respectively, which showed the degree of security is improving, and the environment was developing harmoniously between human and nature. The methods of evaluating ecological security based on the spatial neighbouring relations between landscape patches can be used to reflect preliminarily the ecological security patterns of landscapes.  相似文献   

10.
We present a technique to quantify and model the intensity of structural changes produced by management of dry grazing lands at a landscape scale. The technique is illustrated with the analysis of digitized black–white (b/w) imagery and an application to the study of changes induced by grazing gradients. Structural changes in patchy vegetation canopies were studied in the Patagonian Monte (Chubut, Argentina) at two resolution scales by means of linear transects in the field (50 m) and others drawn on aerial b/w photographs (2–5 km) of grazed paddocks. Spatial series of plant cover values along transects in the field and on photographs were analyzed with standard techniques of spectral analyses, including auto-correlation spectra and Fourier transforms. In order to test the internal consistency of the techniques used, synthetic plant canopies with patches of varying cover and size were generated by means of a stochastic model of plant growth under different stocking rates or after varying periods of recovery. The behavior of the simulation model is consistent with the observed dynamics of plant canopies in semiarid environments. There is a consistent relation between the number and geometric properties of plant patches (patch number, patch size, patch connectivity) and the signal/noise ratios of the Fourier decomposition describing plant density data. Signal/noise ratios corresponding to plant cover data in paddocks with different grazing treatment are consistent with the assumptions derived from modeled canopies, as well as those estimated from optical density of b/w aerial photographs of paddocks. We tested the hypotheses that patch arrangements as quantified by the signal/noise ratios vary in accordance with grazing gradients in paddocks with a permanent corner-located watering point. The use of digitized b/w images allows inspecting permanent changes over time periods when other types of images were not yet available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号