首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
石河子市地下水环境背景值   总被引:11,自引:0,他引:11  
采集并测定了石河子市19个地下水背景水样,分别确定了该市潜水和承压—自流水中K+、Na+、Ca2+、Mg2+、Cl-、SO、HCO、NO、F-、总硬度、矿化度、可溶性SiO2、COD、pH、Cu、Pb、Zn、Cd、Mn、V、Li、Mo、Se、Hg、I、As、Cr+5、C6H5OH、CN-、ABS的环境背景值.  相似文献   

2.
液相催化氧化法烟气脱硫热态试验   总被引:5,自引:0,他引:5  
采用液相催化氧化法和穿流式筛板吸收塔进行了规模为1000m3/h烟气脱硫热态试验。结果表明,当吸收液为浓度01M的Fe2++Mn2+水溶液,烟气风量在818~1418m3/h,液气比为1L/m3,SO2入口浓度在787~7821PPm范围内脱硫率可达49~69%。穿流式筛板塔具有处理能力大、阻力小、不易堵塞、结构简单、传质效果好等特点  相似文献   

3.
COD废液中银的回收   总被引:1,自引:0,他引:1  
COD废液中银的回收周洪春李家兴(辽宁营口市环境监测站,营口115003)①COD废液样加入5%HCl20~25ml,生成AgCl并用少量5%HCl冲洗残余Hg2+、Cr3+、Fe2+等杂质。②沉淀的AgCl中加入10%Na2S溶液100ml(分三次...  相似文献   

4.
降水背景值与酸雨定义研究   总被引:18,自引:0,他引:18  
选择太平洋、印度洋、大西洋、北冰洋、内陆丽江玉龙雪山山麓背景降水H+、Ca2+、Mg2+、SO2-4、NO-3等降水化学组分的背景统计值,研究组分与H+的相关性,从而提出定义海洋降水pH48、内陆50为酸雨,以及背景值是一个区间值的理论依据  相似文献   

5.
汽车尾气催化剂的主要组分是碱性的过渡金属氧化物,容易吸附SO2而中毒,如果在催化剂上形成酸性表面,就可以显著降低催化剂对SO2的吸附,从而减缓中毒的发生。本文对此进行了实验研究。用SnCl4溶液浸渍Al2O3载体,焙烧后生成的SnO2,在催化剂上形成酸性表面这一点已经X射线衍射分析证实。它提高了抗中毒性。效果十分明显,但初活性也有下降,因为表面被活性较低的SnO2所复盖,这一点还有待进一步研究改进。  相似文献   

6.
乌鲁木齐降水特征分析李德忱ANALYSISOFURUMQIPRECIPITATIONCHARACTER¥LiDecheng(UrumqiEnvironmental6ResearchandMonitoringCentre,Urumqi,830000)C...  相似文献   

7.
硫酸锰代替硫酸银快速测定化学需氧量   总被引:2,自引:0,他引:2  
硫酸锰代替硫酸银快速测定化学需氧量党慧雯(石嘴山市环境监测站石嘴山753000)化学需氧量(COD)的测定有标准回流法,库仑法[1]。这两种方法均需用Ag2SO4作催化剂,费用较大。今以MnSO4代替Ag2SO4作催化剂[2],用兰炼环化仪器研究所生...  相似文献   

8.
连续排放监测(CEM)是对燃烧或工业生产过程中排放至大气中的污染物的连续测量,是利用仪器监测在酸雨控制计划的规定期限内削减SO2和NOX排放量的手段。1 CEM的规定酸雨控制计划管理企业的所有者或管理者(经管理系统指定的除外),必须在污染排放源安装CEM系统。CEM系统包括SO2污染物浓度监测仪、NOX污染物浓度监测仪、流量监测仪、黑度监测仪、稀释气体(O2或CO2)监测仪及计算机数据获取和处理系统(DAHS)。在任何情况下,DAHS都必须用于收集和记录监测数据。用CEM系统监测SO2排放量的设备包括SO2污…  相似文献   

9.
应用气相色谱(GC)Ni63电子捕获检测器(ECD),在6201红色担体为基体,涂10%OV-101固定液的玻璃柱上,以甲苯作吸收液,对大气环境中微量二硫化碳能够进行定量检测,其最低检出浓度可达6×10-6mg/ml(进液体样品1μl);方法精密度为3.4%,SO2、H2S气体物质不干扰测定。经现场实际环境样品测试,此方法能够适用于大气环境中微量CS2的分析工作,为大气环境监测微量CS2的分析建立了一个比较合适的方法。  相似文献   

10.
应用活性氧铝—百里香酚酞吸附CO2线性比长法研制出低浓度CO2检测管。测定范围0.05~0.90%;灵敏度为0.05%;检测管变色长度与CO2浓度的相关系数γ=0.9981,精密度与准确度符合国家标准83GB7220~7280。其可靠性与经典的何氏气体分析器比较,结果基本一致。低浓度的SO2、H2S和NH3对测定无明显干扰,现场监测应用效果可靠,值得推广应用。  相似文献   

11.
Al, Cd, Cr, Cu, Fe, Mn, Pb, Zn, NH4+, Mg2+, Ca2+, Na+, K+, Cl-, NO3- and SO4(2-), along with pH were determined in wet and dry deposition samples collected at Al-Hashimya, Jordan. Mean trace metal concentrations were similar or less than those reported for other urban regions worldwide, while concentrations of Ca2+ and SO4(2-) were the highest. The high Ca2+ concentrations were attributed to the calcareous nature of the local soil and to the influence of the Saharan dust, while the high concentrations of SO4(2-) were attributed to the influence of anthropogenic sources and Saharan dust soil. Except for SO4(2-), NO3-, and Ca2+, dry deposition fluxes of measured metals and ions were higher than their corresponding wet deposition fluxes. The high annual average pH values recorded for wet and dry deposition samples were attributed to the neutralization of acidity by alkaline species. Cd, Cr, Cu, Pb, Zn, NO3- and SO4(2-) were enriched in wet and dry deposition samples relative to crustal material, and a significant anthropogenic contribution to these elements and ions is tentatively suggested. Finally, the possible sources and the main factors affecting the concentrations of the measured species are discussed.  相似文献   

12.
The Golden Horn Estuary located in the Istanbul region of Turkey has been thought to be a heavily polluted area since the 1950s: the concentration of the elements, which include heavy metals such as Cu2+, Mn2+, Ni2+, Zn2+, Pb2+, Cd2+, and Fe2+, was therefore investigated in sediment and water samples of the area. The resistance of Enterobacteriaceae members to some heavy metal salts was investigated to determine levels of metal-resistant bacteria in the Golden Horn Estuary after the environmental restoration project in 1998. The sediment samples were collected with an Ekman-Grab in the period from November 2002 to February 2004 from depths of 4-15 m and analyzed by means of an atomic absorption spectrophotometer. Analyses of average heavy metals of sediment samples yielded the following results: 131.5 ppm Cu, 405.5 ppm Mn, 46.5 ppm Ni, 191.2 ppm Zn, 81.5 ppm Pb and 27668 ppm Fe. As with water, Ni concentrations in sediment were found lower than that in limit values. Frequency of heavy metals resistance to Cu, Zn, Fe, Ni, Mn, Pb and Cd was detected as an average of 65.0%, 64.4%, 62.5%, 38.4%, 37.3%, 36.2% and 28.4%, respectively in a total of 192 strains isolated from sediment samples. It was observed that there was no statistically significant difference among the results of analyses with respect to sampling dates. Despite the environmental restoration project in 1998, our study results showed that heavy metal levels were still high in the sediment and this situation induced the tolerance of bacteria to some heavy metals.  相似文献   

13.
Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.  相似文献   

14.
Monitoring studies and thermodynamic modeling were used to reveal the changes of inorganic chemical species of some water pollutants (nutrients and trace metals such as Fe, Mn, Zn, Cu, Cd and Pb) inthe river-estuary-sea water system. The case studies were two rivers, Kamchiya and Ropotamo, representing part of the Bulgarian Black Sea water catchment area, and having different flow characteristics. There were no major differences in inorganic chemical species of the two river systems. NO3(-) and NO2(-) chemical species showed no changes along the river-estuary-sea water system. Concerning phosphates six different species were calculated and differences between the three parts of the systems were established. The HPO4(2-) and H2PO4(-) species were found to be dominant in river waters. The H2PO4(-) species quickly decreased at the expense of HPO4(2-) and Ca, Mg and Na phosphate complexes in estuary and seawater. Trace metals showed a great variety of chemical species. Fe(OH)2(+) species prevailed in river waters, and Fe(OH)3(0) species--in sea waters. Me2+ and MeCO3(0) (Me = Cu, Pb) and PbHCO3(+) were dominant in river waters, while Cu(CO3)2(2-) and PbCl(-) species appear also in sea waters. Cd2+ species prevailed in river and estuary waters, and CdCln(2-n) (n = 1-3) species, in seawater. Free Zn2+ species predominated in all systems but downstream their percentage decreased at the expense of Zn phosphates, carbonates,sulfates and chlorides complexes. Only free Mn2+ species were dominant along the systems.  相似文献   

15.
Plants of L. leucocephala were grown in 100%soil (as control), 100% fly-ash and fly-ash amendedwith 50% press mud for 80 days, and analysed withrespect to plant growth, elemental composition andphysiological changes in different parts of the plant.The results revealed that amending fly-ash with pressmud enhanced plant growth as well as otherphysiological responses such as chlorophyll, protein,in vivo nitrate reductase activity compared to100% fly-ash treated plants. The elements Fe, Zn, Cuand Mn accumulated in larger quantities in plantsgrown in 100% fly-ash, and followed the order ofaccumulation Fe > Zn > Cu > Mn. The results of thisstudy indicate that ash amending with press mud mayprovide more favourable conditions for the growth ofthis tree species.  相似文献   

16.
This study investigates the stabilization of As in the contaminated sludge after treatment with MnO(2) or Ca(OH)(2), and the influence of the stabilizing materials on the leachability of the co-existing elements Pb and Zn. By exploiting a continuous-flow assembly facilitating a modified Wenzel's sequential extraction scheme (designed for the fractionation of arsenic), it is possible to ascertain the leachability, mobility and fractional alteration of these elements under stimulated natural (flow-through) leaching conditions. The fractionation data show that more than 80% of As, Pb and Zn in the untreated sludge are bound in the amorphous Fe oxides fraction and residual fraction. The addition of MnO(2) has only an insignificant effect on As fractional transformation, while Ca(OH)(2) caused an increase in As mobility. For Pb, the decrease in leachability was clearly visible. The extractable Pb was reduced by 18% and 40% in stabilized MnO(2) and Ca(OH)(2) sludge samples, respectively. Unlike that of Pb, the mobility of Zn was not affected by the additives used. Their fractional distribution patterns before and after the stabilization process remained the same. The ability to produce detailed leaching profiles for As and other elements (Pb, Zn, Ca, Mn and Fe) meant that elemental associations in individual fractions could be examined. From the MnO(2)-treated sludge, the coincidence of the As, Pb, Zn, Fe, and Mn peaks seems to indicate a close association of these elements in the Fe-oxides-bound fraction. Furthermore, the leaching profiles may be used as evidence of a strong affinity between these elements and added MnO(2).  相似文献   

17.
The objective of this work was to develop a novel wet-scrubbing process using Fe(VI) for the simultaneous removal of gaseous NO and SO(2). The oxidation of SO(2) and NO with Fe(VI) was studied in aqueous solution at alkaline pH (9.0-11.0). A stoichiometric molar ratio for NO and SO(2) oxidation with Fe(VI) was determined to be nearly 3.0. Sulfate and nitrate was identified as final products by ion chromatography from the reaction at pH 9.0-11.0. The feasibility of simultaneous removal of multiple gas pollutants with the continuous feeding of ferrate in lab-scale was investigated from the view of industrial application. It was found that the removal efficiency of NO and SO(2) was enhanced with the increase of Fe(VI) concentration, more than 90% NO removal efficiency and 100% SO(2) removal efficiency were achieved by wet-scrubbing process using Fe(VI) at room temperature and ambient atmosphere. The results demonstrate that Fe(VI) could be an effective wet-scrubbing agent for the simultaneous removal of NO and SO(2).  相似文献   

18.
The present study was carried out in order to evaluate the statistical apportionment and risk assessment of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshly deposited sediments in Rawal Lake, Pakistan. Composite sediment samples were collected, oven-dried, grounded, homogenized, and processed to assess the water-soluble and acid extractable concentrations of the metals in the water extract and acid extract of the sediments using flame atomic absorption spectrophotometer. Statistical methods were used to identify the possible sources of the metals. Sediment quality guidelines and potential acute toxicity were used to evaluate the ecotoxicological sense of selected metals. Non-carcinogenic health risk assessment was also carried out to determine the potential adverse health risks to the inhabitants. Relatively higher concentration was noted for Ca, Fe, Mg, Na, K, Mn, and Sr in the sediment samples. Principal component analysis and cluster analysis revealed anthropogenic contributions of Cd, Pb, Cr, Mn, Fe, and Li in the sediments. Enrichment factors of the metals in sediments showed severe to moderate enrichment of Cd, Pb, Ca, Fe, Li, Mn, and Sr. Geoaccumulation indices and contamination factors evidenced significant contamination by Cd and Pb, although, on the whole, low degree of contamination was noted. The levels of some metals exceeded the sediment quality guidelines, which revealed frequently adverse biological effects to the dwelling biota in the aquatic ecosystem. The sediments were found to be significantly contaminated by Cd, Pb, Cr, Mn, Fe, and Li.  相似文献   

19.
Distribution of arsenic (As) and its compound and related toxicology are serious concerns nowadays. Millions of individuals worldwide are suffering from arsenic toxic effect due to drinking of As-contaminated groundwater. The Bengal delta plain, which is formed by the Ganga?CPadma?CMeghna?CBrahmaputra river basin, covering several districts of West Bengal, India, and Bangladesh is considered as the worst As-affected alluvial basin. The present study was carried out to examine As contamination in the state of Assam, an adjoining region of the West Bengal and Bangladesh borders. Two hundred twenty-two groundwater samples were collected from shallow and deep tubewells of six blocks of Golaghat district (Assam). Along with total As, examination of concentration levels of other key parameters, viz., Fe, Mn, Ca, Na, K, and Mg with pH, total hardness, and SO $_{4}^{2-}$ , was also carried out. In respect to the permissible limit formulated by the World Health Organization (WHO; As 0.01 ppm, Fe 1.0 ppm, and Mn 0.3 ppm for potable water), the present study showed that out of the 222 groundwater samples, 67%, 76.4%, and 28.5% were found contaminated with higher metal contents (for total As, Fe, and Mn, respectively). The most badly affected area was the Gamariguri block, where 100% of the samples had As and Fe concentrations above the WHO drinking water guideline values. In this block, the highest As and Fe concentrations were recorded 0.128 and 5.9 ppm, respectively. Tubewell water of depth 180 ± 10 ft found to be more contaminated by As and Fe with 78% and 83% of the samples were tainted with higher concentration of such toxic metals, respectively. A strong significant correlation was observed between As and Fe (0.697 at p < 0.01), suggesting a possible reductive dissolution of As?CFe-bearing minerals for the mobilization of As in the groundwater of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号