首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
River Yamuna, like most of the major rivers of India, has become increasingly polluted over the years from both point and non-point sources, particularly in the urban sectors such as Delhi. Field studies, conducted in January, 1994 have investigated the impact of wastewater discharges from four major drains (Najafgarh, Power House, Barapula, Kalkaji) on the overbanks, floodplains and Eichhornia in River Yamuna in Delhi, with particular reference to elemental contamination. It is concluded that except for Cd and Co, overall mean soil concentrations along the full stretch of the river in Delhi are within the world background levels of uncontaminated soils. However, the wastewater discharges from the drains, with the exception of Barapula drain, generally increase the elemental concentrations of overbank soils downstream of the discharges. Eichhornia plants growing along the banks receiving wastewaters from the Najafgarh and Barapula drains are unhealthy and reduced in population which can be attributed to a combination of alkaline pH of the growth medium, metal toxicity and high BOD at the site receiving effluents from the Najafgarh drain, and alkaline pH, metal toxicity and the turbid conditions of water with fly ash particle deposition on the plant surfaces at the site receiving effluents from the Barapula drain. Generally, considering the entire stretch of the river in Delhi, the roots of these plants growing on the overbank soils are found to be accumulators of all elements except Co, Al and Fe, with Co uptake being minimal. There are marked differences in elemental uptake of the water hyacinths growing on the overbanks and floodplains of the river.  相似文献   

2.
The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.  相似文献   

3.
For highly urbanized cities where there is a scarcity of land available for landfilling, incineration of refuse is a feasible solution for solid waste disposal. After incineration, about 20% by weight of fly ash and other residues are produced and disposed of by landfill. Leachate tests carried out on samples of fly ash show that the heavy metal concentrations of the leachate are in excess of the permissible limits set by WHO. Lime and cement are used to stabilize the fly ash. The concentrations of heavy metals in the leachates of lime and cement treated fly ash are non-detectable. In additional to pollution control, the lime and cement treated fly ash significantly improves the properties of soft clay.  相似文献   

4.
The present study describes the development of empirical models for the prediction of various trace metals i.e., Mn, Cu, Fe, Zn and Pb found in the leachates generated from the ash ponds of various thermal power plants. The dispersion phenomenon of these trace metals followed first order reaction rate kinetics. The empirical models for individual trace metals derived from the lab scale models data correlate well with the real field data with regression coefficients varying from 0.93 to 0.98. The predicted concentrations of the trace metals varied within ±3% of the observed values in the leachates generated from the ash ponds of four thermal power plants with standard deviation varying from 0.001 to 0.032. The empirical models derived from the study can be applied for prediction of trace metals in leachates generated from similar thermal power plants.  相似文献   

5.
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions but also with the disposal of ash residues. In particular, use of low quality coal with high ash content results in huge quantities of fly ash to be disposed of. The main problem related to fly ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly ash contacts water. In this study, fly ash samples obtained from thermal power plants, namely Soma and Tunçbilek, located at the west part of Turkey, were subjected to toxicity tests such as European Committee for standardization (CEN) and toxicity characteristic leaching (TCLP) procedures of the U.S. Environmental Protection Agency (U.S. EPA). The geochemical composition of the tested ash samples from the power plant show variations depending on the coal burned in the plants. Furthermore, the CEN and TCLP extraction results showed variations such that the ash samples were classified as `toxic waste' based on TCLP result whereas they were classified as `non-toxic' wastes based on CEN results, indicating test results are pH dependent.  相似文献   

6.
Lignite powered electric generation plants result in increasing environmental problems associated with gaseous emissions and the disposal of ash residues. Especially, low quality coals with high ash content cause enormous quantities of both gaseous and solid fly ash emissions. The main problem is related to the disposal of fly ash, which, in many cases, contains heavy metals. It is known that toxic trace metals may leach when fly ash is in contact with water. In this study, fly ash samples obtained from the thermal power plant in the town of Can in Turkey were investigated for leachability of metals under different acidic and temperature conditions. The experimental results show that a decrease in pH of the leachant favors the extraction of metal ions from fly ash. A significant increase in the extraction of arsenic, cadmium, chromium, zinc, lead, mercury, and selenium ions from the ash is attributed to the instability of the mineral phases. These heavy metals concentrations increase with respect to increasing acidic conditions and temperature. Peak concentrations, in general, were found at around 30°C.  相似文献   

7.
Fly ash is a by-product of coal-fired electricity generation plants. Its utilization and disposal is of utmost importance. Using onion (Allium cepa) root tip system, the present study was carried out to evaluate the potential toxic and genotoxic effects of fly ash, collected from a thermal power plant in West Bengal, India. Prior to testing, the collected fly ash sample was mixed with sand in different proportions. Allium bulbs were allowed to germinate directly in fly ash and after five days the germinating roots were processed for the Allium test. Additionally, the Allium test was adapted for detecting DNA damage through comet assay. The results from the Allium test indicate that fly ash at 100% concentration inhibits root growth and mitotic indices; induces binucleated cells as a function of the proportion, but is not toxic at very low concentration. In the comet assay, a statistical increase for DNA strand breaks was found only at higher concentrations. The sample was analyzed by flame atomic absorption spectrometer for Zn, Pb, Cu, Ni, Cd and As, whose presence could partly be responsible for the toxicity of fly ash. The study concludes that the classical Allium test can give a more comprehensive data when done in combination with the comet assay, which is faster, simpler and independent of mitosis. Also when fly ash is used for other purposes in combination with soils, it should be judiciously used at very low concentrations in order to protect the ecosystem health from any potential adverse effects.  相似文献   

8.
This study evaluates the behaviour of total Cr and Cr (VI) during coal combustion in two Spanish power stations. The content and distribution of Cr in the feed coal and combustion wastes was determined and the Cr contents were normalized using enrichment factor indexes. The speciation of Cr in the fly ash fractions from the different hoppers of the electrostatic precipitators was established and the possibility that the Cr (VI) might lixiviate when ashes are disposed of at landfill sites was assessed. Differences in the distribution and behavior of Cr in the two power stations were observed. According to European directive 1999/31/CEE, soluble Cr(VI) in the fly ashes studied would be unlikely to pose an environmental or health risk when the ash is disposed of.  相似文献   

9.
NALCO – the largest exporter of aluminium in India has a power plant of 720 MW capacity in Nandira watershed in Angul district of Orissa. The power plant utilises local coal to generate thermal power and disposes of large amount of ash which accumulates in slurry form at nearby two ash ponds. These ash ponds were breached on 31 December 2000, causing ash accumulation for entire regime of the Nandira river. An attempt has been made towards preparation of recovery and rehabilitation plan for NALCO using temporal Remote Sensing data and GIS. Indian remote sensing satellite data for pre-breach condition 12 December 2000, during breach event 31 December 2000 and post-breach condition 4 and 6 January 2001 has been digitally analysed for Nandira watershed. The satellite data of coarse spatial resolution provides the absence and presence of fresh sediment deposition along Nandira watershed and Brahmani river pertaining to pre-breach and post-breach conditions respectively on regional scales. The temporal comparison of fine resolution has clearly highlighted the aerial extent of damage caused by the disaster for entire watershed on local scales. The GIS has helped in demarcation of freshly accumulated ash at interval of 500 m along the river length as well as in delineation of maximum ash accumulation across the river width. The study has clearly demonstrated the use of temporal Remote Sensing data in conjunction with GIS for disaster management in terms of recovery and rehabilitation plan preparation of the Nandira watershed.  相似文献   

10.
Fly ash from coal combustion contains trace elements which, on disposal or utilisation, may leach out, and therefore be a potential environmental hazard. Environmental conditions have a great impact on the mobility of fly ash constituents as well as the physical and chemical properties of the fly ash. Existing standard leaching methods have been shown to be inadequate by not representing possible disposal or utilisation scenarios. These tests are often criticised on the grounds that the results estimated are not reliable as they are not able to be extrapolated to the application scenario. In order to simulate leaching behaviour of fly ash in different environmental conditions and to reduce deviation between measurements in the fields and the laboratories, it is vital to study sensitivity of the fly ash constituents of interest to major factors controlling leachability. pH, liquid-to-solid ratio, leaching time, leachant type and redox potential are parameters affecting stability of elements in the fly ash. Sensitivity of trace elements to pH and liquid to solid ratio (as two major overriding factors) has been examined. Elements have been classified on the basis of their leaching behaviour under different conditions. Results from this study have been used to identify leaching mechanisms. Also the fly ash has been examined under different standard batch leaching tests in order to evaluate and to compare these tests. A Leaching Test Framework has been devised for assessing the stability of trace elements from fly ashes in different environments. This Framework assists in designing more realistic batch leaching tests appropriate to field conditions and can support the development of regulations and protocols for the management and disposal of coal combustion by-products or other solid wastes of environmental concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号