首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
重庆市春季不同功能区PM10中多环芳烃的污染特征   总被引:2,自引:2,他引:0  
2012年4月在重庆市4个不同功能区连续10 d同步采集了大气PM10环境样品,利用气相色谱-质谱法分析测定美国环保局16种优控多环芳烃(PAHs).结果显示,在重庆主城区PM10中检测到16种优控PAHs,总浓度(∑PAHs)范围为31.68~ 189.31 ng/m3,平均浓度为108.05 ng/m3.各个功能区大气PM10中PAHs总浓度存在明显差别:交通区(沙坪坝七中)154.47 ng/m3>工业区(大渡口区政府)132.92 ng/m3>居民区(南岸工商大学)105.58 ng/m3>对照区(缙云山风景区)39.16 ng/m3.根据典型污染来源中PAHs的特征比值综合判断,重庆市春季大气中PM10主要来源于燃煤和交通污染的混合源.  相似文献   

2.
在克拉玛依市中心城区布设4个采样点,在供暖期和非供暖期分别同步采集4个点位大气中不同粒径的颗粒物,采用HPLC进行分析并计算2个采样期内PM_(10)和PM_(2.5)中多环芳烃(PAHs)的浓度和种类。结果表明:中心城区供暖期PM_(10)中PAHs浓度为56.19 ng/m3,PM_(2.5)中PAHs浓度为48.85 ng/m3;中心城区非供暖期PM_(10)中PAHs浓度为18.86 ng/m~3,PM_(2.5)中PAHs浓度为14.53 ng/m~3。不同采样期PM_(10)和PM_(2.5)中PAHs浓度变化趋势相同,均为供暖期明显大于非供暖期。中心城区供暖期大气颗粒物吸附的PAHs以4环以下的组份为主,非供暖期则是5~6环的高环数组份偏多。分析结果表明克拉玛依市中心城区供暖期颗粒物中PAHs来源于燃煤排放叠加机动车排放,与中心城区集中供热锅炉关系密切;非供暖期则是以机动车排放污染为主。  相似文献   

3.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

4.
采用气相色谱-质谱联用仪定量分析2016年沈阳市PM_(2.5)中16种多环芳烃(PAHs)的质量浓度,探讨其时空分布特征,并解析PAHs的来源。结果表明:沈阳市PAHs的平均质量浓度为71. 5 ng/m3,其中3环、4环PAHs分别占31. 3%和48. 8%;采暖期PAHs浓度明显高于非采暖期,中心城区高于周边。总毒性当量浓度平均值为8. 05 ng/m3。特征比值法和主成分分析法解析的PAHs来源基本一致,主要为燃烧源、石油挥发源和工业生产源,贡献率分别为70. 11%、14. 19%和10. 74%。  相似文献   

5.
通过采集了2004~2006年北京市昌平区四个季节中大气PM10样品,采用超声抽提方法,使用GC/MS分析了该区PAHs含量和组成.结果显示,三年中四个季度的18种PAHs总量范围分别为21.64~656.39ng/m3、31.94~164.33ng/m3和7.294~209.3ng/m3,其中致癌性极强的苯并[a]芘含量范围为2.69~36.95 ng/m3、1.44~6.6ng/m3和0.256~8.625ng/m1,其变化趋势与PAHs总量有较好的相关性.PAHs的浓度是冬季>秋季>夏季>春季,这与夏季时雨水冲刷和阳光照射强度大导致PAHs光解,冬季时燃煤排放大等影响因素有关.文章还使用多种方法判断昌平区大气PM10中的PAHs主要来源于燃煤和汽车尾气,其它污染源贡献较小.  相似文献   

6.
2011年4月通过GC-MS检测和210Pb测年对灌河口海域沉积物(GHES)中的PAHs进行了分析,柱状沉积物中21种PAHs总浓度为21.0~209.0 ng/g,均值为88.1 ng/g,7种致癌PAHs浓度为7.0~90.0 ng/g,其中致癌剂苯并[a]芘浓度为ND~2.0 ng/g。PAHs浓度与沉积物中有机质含量呈低度正相关,与p H无明显相关性。源解析表明,近50年来GHES中的PAHs大部分来自煤和生物质燃烧。近50年来,总PAHs和16种优控PAHs浓度在波动中升高;近年来苊、苊烯、苯并[b]荧蒽、荧蒽、茚并[1,2,3-cd]芘的浓度增高,需查明来源。生态风险评价表明,GHES中以芴为主的负面生物毒性效应会偶尔发生。芴、苯并[b]荧蒽、苯并[k]荧蒽的浓度介于临界与偶然效应浓度值之间,应尽量减少对该海域沉积物的搅动,防止污染物再悬浮导致水体的二次污染。  相似文献   

7.
淮南市春季大气PM 10 中多环芳烃的污染特征及来源   总被引:3,自引:0,他引:3       下载免费PDF全文
2008年4月-2008年6月对淮南市的5个采样点PM10连续采样,分析了其中多环芳烃(PAHs)。PAHs质量浓度的最大值和最小值分别为112ng/m^3和15.2ng/m^3,PAHs春季质量浓度均值为40.2ng/m^3;PAHs组成以4环和5环为主;春季不同采样点PAHs质量浓度与环境温度呈负相关关系,运用PAHs比值综合判断,淮南市春季大气PM10中PAHs主要来源于燃煤和机动车尾气。  相似文献   

8.
分析了隧道沥青摊铺过程环境空气中的TSP及多环芳烃质量浓度。TSP用膜法,中流量采样器采样15 min,重量法分析;超声波萃取,高效液相色法分析多环芳烃。结果表明,摊铺机周围空气中TSP超过8 mg/m3,道路空气中TSP超过3 mg/m3;环境空气中苊烯等12种多环芳烃均有检出,苊烯和艹屈质量浓度较高,苯并[a]芘和二苯并[a,h]蒽质量浓度较低。苯并[a]蒽、苯并[a]芘和二苯并[a,h]蒽超标,对人体健康危害较大。建议加强相关行业PAHs的排放水平及其健康风险研究,制定相关限值标准和沥青摊铺过程环境空气的沥青烟监测方法标准。  相似文献   

9.
郑州市环境空气中多环芳烃污染状况及变化规律的研究   总被引:3,自引:1,他引:2  
对郑州市2004年环境空气中多环芳烃的污染状况及变化规律进行了初步研究,结果表明,郑州市环境空气中15种优控PAHs的浓度范围为未检出-698ng/m3,强致癌性物质苯并(a)芘的检出率为100%,其浓度范围为1.56~136ng/m3.PAHs类物质在不同季节的变化趋势为冬季>秋季>春季>夏季;在不同功能区变化趋势为工业区>混合区>交通密集区>文化区>对照区.  相似文献   

10.
2012年12月4日—11日,使用微孔均匀撞击式采样器(MOUDI)连续7 d采集广东省韶关市3个环境空气监测点气溶胶样品,采用GC/MS测定包括美国国家环保局(USEPA)优控多环芳烃(Σ16PAHs)在内的17种PAHs的浓度水平,并分析Σ16PAHs的粒径分布特征和来源。结果表明:韶关市冬季气溶胶颗粒中Σ16PAHs的质量浓度为17.29 ng/m3~23.97 ng/m3;Σ16PAHs集中在1.0μm~3.2μm的积聚态和粗颗粒中,呈单峰分布特征;比值参数分析显示,韶关市大气颗粒物中PAHs主要来自燃煤和汽车尾气的排放。  相似文献   

11.
Non-occupational inhalation and ingestion exposure to polycyclic aromatic hydrocarbons (PAHs) has been studied in 8 non-smoking volunteers through personal air sampling and urinary biomonitoring. The study period was divided into 4 segments (2 days/segment), including weekdays with regular commute and weekends with limited traffic related exposures; each segment had a high or low PAH diet. Personal air samples were collected continuously from the subjects while at home, at work, and while commuting to and from work. All urine excretions were collected as individual samples during the study. In personal air samples, 28 PAHs were measured, and in urine samples 9 mono-hydroxylated metabolites (OH-PAHs) from 4 parent PAHs (naphthalene, fluorene, phenanthrene and pyrene) were measured. Naphthalene was found at higher concentrations in air samples collected at the subjects' residences, whereas PAHs with four or more aromatic rings were found at higher levels in samples taken while commuting. Urinary OH-PAH biomarker levels increased following reported high inhalation and/or dietary exposure. On days with a low PAH diet, the total amount of inhaled naphthalene during each 24-hour period was well correlated with the amount of excreted naphthols, as was, to a lesser extent, fluorene with its urinary metabolites. During days with a high dietary intake, only naphthalene was significantly correlated with its excreted metabolite. These findings suggest that this group of non-occupational subjects were exposed to naphthalene primarily through indoor air inhalation, and exposed to other PAHs such as pyrene mainly through ingestion.  相似文献   

12.
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.  相似文献   

13.
Passive samplers have become more popular in their application in the measurement of airborne chemicals. For volatile organic compounds, the rate of a chemical's diffusivity is a determining factor in the quantity of the chemical being collected for a given passive sampler. While uptake rate of a chemical in the passive sampler can be determined either by collocation deployment of both active and passive samplers or use of controlled facilities such as environmental chambers, a new approach without a need for accurate active flow rate in the collocation experiment was demonstrated in this study. This approach uses chemicals of known uptake rates as references to calculate the actual flow rate of the active sampling in the collocation experiment. The active sampling rate in turn can be used in the determination of the uptake rates of all other chemicals present in the passive samplers. The advantage of such approach is the elimination of the errors in actual active sampling rate associated with low flow employed in the collocation experiment. Using this approach, passive uptake rates of more than 80 volatile organic compounds commonly present in indoor air were determined. These experimentally determined uptake rates correlate well with air diffusivity of the chemicals, indicating the regression equation describing such correlation might be useful in predicting the uptake rates of other volatile organic chemicals in indoor air based on their air diffusivity.  相似文献   

14.
The development of convenient and competitive devices and methods for monitoring of organic pollutants in the aquatic environment is of increasing interest. An integrative passive sampling system has been developed which consists of a solid poly(dimethylsiloxane) (PDMS) material (tube or rod), acting as hydrophobic organic receiving phase, enclosed in a water-filled or an air-filled low-density polyethylene (LDPE) membrane tubing. These samplers enable the direct analysis of the pollutants accumulated during exposure in the receiving phase by thermodesorption-GC/MS, avoiding expensive sample preparation and cleanups. The capabilities of these sampling devices were studied for the sampling of 20 persistent organic pollutants (chlorobenzenes, hexachlorocyclohexanes, p,p'-DDE, PAHs, and PCBs) in laboratory exposure experiments. For the three sampler designs investigated the uptake of all target analytes was integrative over exposure periods up to 9 days (except PCB 101). The determined sampling rates range from 4 to 1340 microl h(-1) for the water-filled samplers and from 20 to 6360 microl h(-1) for the air-filled ones, respectively. The sampling rate of the analytes is dependent on their molecular weight, partition between water and sampler media (PDMS, polyethylene, water, air) and also of the sampler design. The passive samplers enable the estimation of time-weighted average (TWA) concentration of water pollutants in the lower ng l(-1) to pg l(-1) range.  相似文献   

15.
A GC-MS procedure for the determination of hydrocarbons in air samples from Oviedo, Spain, was developed. Air hydrocarbons were sampled with a high volume sampler equipped with a holder containing a glass fiber filter, to trap the particulate phase, and two polyurethane foams to capture hydrocarbons of the vapour phase. Compounds were extracted with CH2Cl2 by Soxhlet extraction and then fractionated using column chromatography with alumina silica. Analyses of the fractions were performed by GC-MS in the electron ionization mode. PAHs and n-alkanes were the compounds examined in this work. Samples collected in the vicinity of the Faculty of Chemistry (a semi-urban area) were analysed. The total concentration of PAHs in the air samples analysed ranged from 28 to 76 ng m(-3). The total concentration of n-alkanes and PAHs in the vapour phase exceeded the concentration in the particulate phase in the samples analysed.  相似文献   

16.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

17.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

18.
19.
While air sampling techniques using adsorbent-based collection, thermal desorption and chromatographic analysis have found a niche in ambient air sampling, occupational applications have been more limited. This paper evaluates the use of thermal desorption techniques for low flow active and passive sampling configurations which allow conveniently long duration sampling in occupational settings and other high concentration environments. The use of an orifice enables flows as low as 0.5 ml min(-1) and sampling periods up to several days without significant biases. A model is used to predict sampling rates of a passive sampler encompassing an orifice, a void space, glass wool, and the adsorbent. Laboratory and field tests conducted at a commercial offset printing facility, which contained a variety of volatile organic compounds (primarily aromatic but also a few chlorinated and terpene compounds at levels from 1 to 67,000 microg m(-3)), are used to evaluate the approach. Tenax GR and Carbosieve SIII, both singly and together, were employed as adsorbents. Side-by-side tests comparing high flow, low flow and passive samplers show excellent agreement and high linearity (r = 0.95) for concentrations spanning nearly five orders of magnitude. Active samplers were tested at flows as low as 0.5 ml min(-1), compared to typical flows up to 40 ml min(-1). Passive samplers demonstrated a linear range and agreement with predictions for adsorbate loadings from approximately 1 ng to nearly 10 microg. Using a chemical mass balance receptor model, concentrations in the facility were apportioned to solvents, inks and other indoor and outdoor sources. Overall, the use of low flow active and passive sampling approaches employing thermal desorption techniques provides good performance and tremendous flexibility that facilitates use in many applications, including workplace settings.  相似文献   

20.
While polyurethane foam (PUF) disk passive air samplers are employed increasingly to monitor persistent organic pollutants in indoor air, they essentially sample only the vapour phase. As a previous investigation of the vapour : particle phase partitioning of hexabromocyclododecanes HBCDs in (outdoor) air reported them to be present largely in the particulate phase, we monitored three offices using active air samplers. In each, approximately 65% of HBCDs were present in the vapour phase, suggesting PUF disk passive samplers are suitable for monitoring HBCDs in indoor air. Concentrations in the three offices (239-359 pg Sigma HBCD m(-3)) exceed substantially those reported in outdoor air from the United States (2.1-11 pg Sigma HBCD m(-3)), but are in line with outdoor air from Stockholm. The relative abundance of the three principal diastereomers in office air was closer to that found in technical HBCD formulations (i.e. predominantly gamma-HBCD) than in most US outdoor air samples. Time integrated air concentrations of alpha-, beta-, and gamma-HBCD were obtained for an office using a low volume sampler operated over a 50 d period alongside PUF disk samplers. This calibration exercise yielded the following passive air sampling rates for both a fully- and part-sheltered PUF disk sampler design: for alpha-, beta-, and gamma-HBCD, 0.87, 0.89, and 0.91 m3 d(-1) respectively (fully-sheltered) and 1.38, 1.54, and 1.55 m3 d(-1) respectively (part-sheltered). Deployment of the part-sheltered configuration yielded concentrations approximately 35% lower than those obtained using a high volume sampler, consistent with PUF disk samplers measuring primarily the vapour phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号