首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于文献计量学的“十三五”生态环境监测研究热点分析   总被引:4,自引:4,他引:0  
利用科学计量与可视化相关工具,以《中文核心期刊要目总览(2017年版)》27种环境科学类核心期刊发表的2016—2020年生态环境监测论文数据为基础,从载文量分布、高被引论文、高产机构分布和技术主题分布等方面分析了"十三五"期间我国生态环境监测研究热点。结果表明:"十三五"期间生态环境监测论文数量有所增加,主要载文期刊分布于《环境科学》《中国环境监测》《环境科学与技术》;主要发文机构是中国环境科学研究院、中国环境监测总站、中国科学院大学;排名前10位的技术主题词分别是PM_(2.5)、重金属、土壤、污染特征、颗粒物、挥发性有机物、生态风险、臭氧、沉积物、多环芳烃,结合"十三五"前期和中后期热点主题词变化分析了生态环境监测研究关注点的变化趋势。  相似文献   

2.
PM_(2.5)影响人们的生活,危害城市居民的健康,因而在大范围、连续空间上精准预测PM_(2.5)的浓度对于降低居民暴露在大气污染环境中的风险意义重大。基于空气中PM_(2.5)浓度对气象因子、社会经济因子和下垫面条件因子的响应关系,利用皮尔逊相关分析、PCA分析和随机森林模型RF构建了长江三角洲地区浓度的预测模型。研究发现:(1)PM_(2.5)浓度大小分布与夜间灯光指数NLI、国内生产总值GDP、降雨量PRE、温度TEP、相对湿度RH、植被指数EVI以及土地利用覆被LUCC呈显著相关(P0.05),其中NLI和GDP与PM_(2.5)浓度呈正相关,PRE、TEP、RH与PM_(2.5)浓度呈负相关。(2)主成分数量为4时,方差累积贡献率达到86.7%,PRE、RH、GDP、NLI和EVI是影响长三角地区PM_(2.5)浓度空间变化的最重要的5个因子。(3)PCA-RF模型对于PM_(2.5)浓度的预测具有较好的表现且在长三角中西部的城市预测效果好于东南部沿海城市。相对于逐步回归SR模型,PCA-RF模型验证数据集上的均方根误差RMSE降低12.7%,决定系数R2提高12.1%,平均绝对误差MAE降低8.3%。  相似文献   

3.
中国城市细颗粒物(PM_(2.5))空气质量达标率低,且城市间的污染程度差异较大。为了整体改善PM_(2.5)空气质量,需要针对不同污染程度的城市,制定分阶段改善目标加以考核和管理,研究探讨了城市PM_(2.5)空气质量改善目标体系及不同污染程度城市各阶段目标值。首先运用文献综述法、国内外对比分析法梳理评述了WHO、欧美等发达国家PM_(2.5)的空气质量标准和达标要求,提出中国城市PM_(2.5)空气质量改善的考核目标体系,包括PM_(2.5)浓度目标值或下降率、严重污染天数上限、达标天数下限等指标。通过历史数据分析法研究了2000—2013年美国、日本一些城市和2013—2016年中国74个环保城市PM_(2.5)年均浓度的变化趋势,推论出中国城市PM_(2.5)年均浓度年均下降5%~8%是可能实现的;结合环境保护部及各省市PM_(2.5)污染防治规划,提出PM_(2.5)空气质量改善目标的设定原则和达标天数的回归计算方法;以2014年114个城市PM_(2.5)年均浓度为基数,计算得出不同污染程度城市2020、2025、2030年PM_(2.5)年均浓度年下降率和达标天数的目标值。  相似文献   

4.
杭州城区PM2.5和PM10污染特征及其影响因子分析   总被引:1,自引:0,他引:1  
利用2013年12月—2014年11月杭州城区空气质量监测站PM_(2.5)、PM_(10)浓度值结合气象、道路、人口数据以及站点周边绿地信息分析PM_(2.5)、PM_(10)浓度时空特征及其影响因子。结果表明,杭州城区各监测站PM_(2.5)和PM_(10)晴天日浓度变化趋势基本一致,PM_(2.5)比PM_(10)污染严重;晴天日PM_(2.5)、PM_(10)浓度值与对应的温度(-0.463,-0.281)、风速(-0.305,-0.332)呈负相关,与湿度(0.257,0.239)呈正相关;晴天有风时,杭州市区PM_(2.5)、PM_(10)污染北部重于南部,东部重于西部,浓度极高值集中在风速小于5 m/s时段,且风速越小浓度值越高;温度为12℃左右,湿度在60%~80%时,颗粒物污染最严重;交通高峰时各监测站PM_(2.5)、PM_(10)污染程度存在明显差异。相关性分析表明,PM_(2.5)、PM_(10)污染程度与道路密度成正比,与缓冲区内绿地覆盖面积成反比。PM_(2.5)污染程度与人口密度成正比,PM_(10)污染与人口密度成反比。  相似文献   

5.
选取荒漠草原无林地的PM_(2.5)、PM_(10)浓度以及气象因子数据,对颗粒物浓度的时间变化特征及其与气象因子的关系进行分析。结果表明:(1)1月的PM_(2.5)、PM_(10)月平均浓度最高,7月的PM_(2.5)与PM_(10)达到最低。季节尺度上PM_(2.5)、PM_(10)浓度变化为由大到小顺序依次为冬季秋季春季夏季。(2)风速≤4.0 m/s时,随着风速增加,PM_(2.5)、PM_(10)浓度不断降低;当风速4.0 m/s时,PM_(2.5)、PM_(10)浓度随风速增加而增加。PM_(2.5)、PM_(10)浓度与温度负相关。相对湿度≤50%时,随着相对湿度增加,PM_(2.5)、PM_(10)浓度呈增加趋势;相对湿度50%时,随着空气湿度增加,PM_(2.5)、PM_(10)浓度呈降低趋势。随着大气气压上升,PM_(2.5)与PM_(10)浓度随之增加。(3)不同季节的气象因子对PM_(2.5)、PM_(10)影响存在差异。  相似文献   

6.
环境空气细颗粒物(PM_(2.5))污染是我国目前较为突出的环境问题,也对人群健康造成严重威胁。基于国内外5套不同来源的2015年中国PM_(2.5)年均暴露浓度数据和5种暴露-反应关系(exposure-response,E-R)模型,设置了不同PM_(2.5)暴露浓度与E-R模型的25种组合情景,评估了2015年中国归因于环境PM_(2.5)导致的超额死亡数。结果表明,2015年全国(覆盖2 826个区县) PM_(2.5)相关超额死亡数为75.0万~256.5万例,其中应用国内E-R模型评估得到的超额死亡数(186.0万~256.5万例)大于国外模型评估得到的超额死亡数(75.0万~133.2万例);空间分布上,京津冀、河南、山东等重污染地区及人口密度较大地区的PM_(2.5)相关疾病负担较重,这些地区需制定更严格的政策来改善空气质量及保护公众健康。指出,我国地面监测站获得的暴露数据通常会高估全国PM_(2.5)的实际浓度均值,运用多套PM_(2.5)暴露浓度数据和多种E-R模型评估疾病负担,有利于减少评估的不确定性。提出,应加强我国PM_(2.5)与人群健康的队列研究及数据积累,以获取更准确的E-R关系,提升PM_(2.5)相关疾病负担评估结果的准确性。  相似文献   

7.
基于文献计量学分析中国“雾霾”研究状况   总被引:1,自引:1,他引:0  
运用文献计量学的研究方法,以CSCD为数据源,利用Excel软件对有关雾霾研究发表的文献进行数据统计与分析,从文献发表的年代、基金资助、高产作者、高被引文献、热点文献等角度,采用定量和定性的方法揭示了目前科研领域关于雾霾的研究进展。国内雾霾研究整体呈增长趋势,可分为3个发展阶段:发展缓慢期,逐步提高期,快速发展期。基金资助分析显示、从中央到地方对雾霾的研究重视程度都很高。从雾霾发文量著者H指数看,因雾霾在国内毕竟还是一个新的研究点,故高产作者H指数相对较低;高产作者所在研究机构主要集中在相关大气、环境、气象等高校或科研院所,研究方向主要集中在环境与生态、气象与大气等学科;雾霾的起因、如何控制和治理及所带来的人体健康问题等是目前研究的热点。  相似文献   

8.
北京地区不同季节PM2.5和PM10浓度对地面气象因素的响应   总被引:1,自引:0,他引:1  
利用2013年1月—2014年12月北京地区PM_(2.5)和PM_(10)监测数据和同期近地面气象观测数据,采用非参数分析法(Spearman秩相关系数)研究了北京地区PM_(2.5)和PM_(10)的浓度对不同季节地面气象因素的响应。结果表明:北京地区大气颗粒物浓度水平具有明显的季节特征,冬季大气颗粒物污染最严重,夏季最轻。不同季节影响颗粒物浓度水平的气象因素各不相同,其中风速和日照时数为主要影响因素。PM_(2.5)和PM_(10)质量浓度对气象因素变化的响应程度也有较大区别,PM_(2.5)/PM_(10)比值冬季最高,PM_(2.5)影响最大,春季最低,PM_(10)影响最大。这些结论可对制订科学有效的大气污染控制策略提供参考。  相似文献   

9.
基于聚类分析的颗粒物监测网络优化研究   总被引:1,自引:0,他引:1  
为了优化香港环境监测网络,收集香港14个监测站2011年1月1日至2015年11月30日的颗粒物PM_(2.5)、PM_(10)的小时数据进行统计分析。对PM_(2.5)进行聚类,并利用日均浓度变化图进行验证,结果表明,可将监测站分为4类(A、B、C、D类),A类位于城市郊区,B类则位于港口附近,且A、B类的PM_(2.5)日变化特征均呈现双峰型分布,峰值分别出现在09:00和21:00。对PM_(10)进行类似分析结果表明,监测站同样可以分为4类,A类位于九龙区,B类则位于港口附近,而且A、B类的PM_(10)日变化双峰分别出现在11:00和20:00左右。说明污染源头及地形的相似致使某些监测站颗粒物浓度的变化出现相同的趋势,导致监测设备的浪费和管理的冗余。建议建立更高效的空气管理系统,将冗余设备转移到其他地区,扩大空气监控区域。对PM_(2.5)/PM_(10)聚类结果表明,将监测站分为4类,B类均属于路边站,C类则位于居民区。同时还发现同类监测站PM_(2.5)/PM_(10)数值变化相同,并且可以用其中一个站的PM_(2.5)和PM_(10)浓度及另一个站的PM_(2.5)或PM_(10)浓度预测PM_(2.5)或PM_(10)浓度,为优化监测资源提供了一种新的思路。  相似文献   

10.
中国各城市细颗粒物(PM_(2.5))环境空气质量差异较大,呈现明显的区域污染特征。合理划分PM_(2.5)污染防治区域、开展区域性大气环境管理,是改善区域空气质量的重要途径。根据2015年全国108个重点城市大气PM_(2.5)的日均浓度数据,使用系统聚类方法对各城市的PM_(2.5)全年污染变化特征进行分析,从而划分出不同防治区域。依据聚类分析的3项原则,综合比较4种不同聚类方法及结果,最后提出可以划分出8个PM_(2.5)污染防治区域:a赣鄂湘接壤地区(长株潭及周边城市),b成渝及周边地区,c粤桂地区,d闽浙沿海城市群,e东三省地区,f长三角地区,g山东及周边地区,h京津冀、山西中北部、陕西关中城市群。  相似文献   

11.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

12.
随着工业化和城市化进程的加速,大气气溶胶污染日趋严重,由气溶胶细粒子PM2.5污染造成的能见度恶化事件越来越多,中国东部地区灰霾天气迅速增加.灰霾天气的本质是细粒子气溶胶污染,与光化学污染相关联,形成灰霾天气的气溶胶组成非常复杂.近年来由于灰霾天气日趋严重引发的环境效应问题,以及气溶胶辐射强迫引发的气候效应问题,已引起科学界、政府部门和社会公众的广泛关注,成为热门话题.在此背景下,国家出台了新版《环境空气质量标准》(GB 3095-2012),增设PM2.5浓度限值,对环境监测、环境管理和环境评价提出了新的要求.通过分析中国大气污染背景、国际组织和其他国家的PM2.5标准,及近期热点问题,提出在环境监测、环境管理和环境评价过程中实施新标准,监控PM2.5的策略.  相似文献   

13.
This research paper aims at establishing baseline PM10 and PM2.5 concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM2.5) and coarser fractions (PM10-2.5) to PM10 fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM10 concentration was 304 μg/m3, which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM10 concentration was due to fine fraction (PM2.5) released by vehicular exhaust. The 24h average PM2.5 concentration was found 179 μg/m3, which is exceeded USEPA and EU standards of 65 and 50 μg/m3 respectively for the winter. India does not have any PM2.5 standards. The 24 h average PM10-2.5 concentrations were found 126 μg/m3. The PM2.5 constituted more than 59% of PM10 and whereas PM10-PM2.5 fractions constituted 41% of PM10. The correlation between PM10 and PM2.5 was found higher as PM2.5 comprised major proportion of PM10 fractions contributed by vehicular emissions.  相似文献   

14.
为深入研究PM2.5和PM10质量浓度异常“倒挂”现象的成因及影响,在苏州市相城区国控点开展比对监测分析,回顾性分析了2016—2020年苏州全部国控点颗粒物浓度数据。苏州市相城区国控点PM2.5浓度的比对分析结果表明:该国控点频繁出现PM2.5浓度高于其他国控点PM2.5浓度和高于该站点PM10浓度(“倒挂”率高达34%)的“双高”现象,PM2.5平均浓度比其他9个国控点高12.5%~37.2%,比位于同一站点的备用监测仪器(“倒挂”率为0)高38.1%。2016—2020年,苏州全部国控点“倒挂”时间的总体趋势都是逐年递增,且集中发生在相对湿度较高的20:00至次日07:00。这5年间各国控点PM2.5浓度异常偏高导致的异常“倒挂”现象对全市年均浓度产生的正误差分别为1.6%、2.8%、6.0%、6.2%和4.1%,基本呈现出逐年递增的趋势。上述结果表明:苏州PM2.5浓度偏高是由动态加...  相似文献   

15.
利用山西省11个地级市大气环境监测站的PM2.5、PM10和O3浓度数据,分析了2015—2020年山西省PM2.5、PM10和O3浓度时空变化特征,采用空间计量模型和岭回归方法,分析了空气污染对公众健康的空间影响。结果表明:PM2.5和PM10年均质量浓度总体下降,两者在2017年最高,2020年最低;O3年均浓度总体增加。在季节尺度上,PM2.5和PM10质量浓度在冬季的12月和1月最高,夏季的8月最低;O3浓度在6月最高。空间上,相较2015年,2020年山西省各地级市PM2.5污染程度均有改善,其中长治改善效果最好;2020年山西各地级市PM10污染兼有加重和减轻的情形,所有地级市PM2.5和PM10污染水平均超过国家二级污染浓度限值;2020年山西多数地级市O3浓度升高。山西公众健康水平具有明显的空间离散特征,PM2.5和PM10浓度的局部空间自相关特征高度一致,呈现"南高北低"的格局,O3浓度分布呈"南部高,中北部低"的格局。大气环境质量和经济发展水平均对医疗机构诊疗人数和健康体检人数的变化有正向影响,每万人卫生技术人员数量和公共财政支出比例对公众健康均有负向影响,其中经济发展水平和大气环境质量的影响最显著。山西省PM2.5治理取得一定成效,但大部分城市PM2.5和PM10达标率较低,O3浓度有持续升高的趋势,PM10和O3污染改善缓慢,深度减排仍面临挑战。PM2.5和PM10是危害山西公众健康的主要大气污染物,未来需要加强PM2.5、PM10和O3的精细化管理及协同治理。  相似文献   

16.
This paper describes concentration amounts of arsenic (As), particulate mercury (Hg), nickel (Ni) and lead (Pb) in PM10 and PM2.5, collected since 1993 by the Technological and Nuclear Institute (ITN) at different locations in mainland Portugal, featuring urban, industrial and rural environments, and a control as well. Most results were obtained in the vicinity of coal- and oil-fired power plants. Airborne mass concentrations were determined by gravimetry. As and Hg concentrations were obtained through instrumental neutron activation analysis (INAA), and Ni and Pb concentrations through proton-induced X-ray emission (PIXE). Comparison with the EU (European Union) and the US EPA (United States Environmental Protection Agency) directives for Ambient Air has been carried out, even though the sampling protocols herein – set within the framework of ITN's R&D projects and/or monitoring contracts – were not consistent with the former regulations. Taking this into account, 1) the EU daily limit for PM10 was exceeded a few times in all sites except the control, even if the number of times was still inferior to the allowed one; 2) the EU annual mean for PM10 was exceeded at one site; 3) the EPA daily limit for PM2.5 was exceeded one time at three sites; 4) the EPA annual mean for PM2.5 was exceeded at most sites; 5) the inner-Lisboa site approached or exceeded the legislated PMs; 6) Pb levels stayed far below the EU limit value; and 7) concentrations of As, Ni and Hg were also far less than the reference values adopted by EU. In every location, Ni appeared more concentrated in PM2.5 than in coarser particles, and its levels were not that different from site to site, excluding the control. The highest As and Hg concentrations were found in the neighbourhood of the coal-fired, utility power plants. The results may be viewed as a “worst-case scenario” of atmospheric pollution, since they have been obtained in busy urban-industrial areas and/or near major power-generation and waste-incineration facilities.  相似文献   

17.
Ambient concentrations of PM2.5 and PM10 are of concern with respect to effects on human health and environment. Increased levels of mortality and morbidity have been associated with respirable particulate air pollution. In India, it is not yet mandatory to monitor PM2.5 levels therefore very limited information is available on PM2.5 levels. To understand the fine particle pollution and also correlate with PM10 which are monitored regularly in compliance with ambient air quality standards. This study was carried out to monitor PM2.5, PM10, and NO2 for about one year in a residential cum commercial area of Mumbai city with a view to understand their correlation. The average PM2.5 concentration at ambient and Kerbsite was 43 and 69 μg/m3. The correlation coefficients between PM2.5 and PM10 at ambient and Kerbsite were 0.83 and 0.85 respectively thus indicating that most of the PM2.5 and PM10 are from similar sources. TSP, PM10 levels exceeded Central Pollution Control Board(CPCB) standard during winter season. PM2.5 levels also exceeded 24 hourly average USEPA standard during winter season indicating unhealthy air quality.  相似文献   

18.
基于北京市PM2.5和PM10质量浓度、组分浓度以及降水数据,利用数理统计、相关性分析等方法分别从降水总量、降水时长和降水前颗粒物浓度3个角度研究降水对PM2.5、PM10的清除作用,同时以一次典型降水过程为例,具体分析降水对颗粒物的影响。结果表明:降水总量的增加有助于促进PM2.5、PM10的清除,随着降水总量增加,PM2.5、PM10的平均清除率提高,有效清除的比例增加;连续降水可增强对大气颗粒物的湿清除作用,连续降水达3d可有效降低PM2.5、PM10浓度;降水对PM2.5、PM10浓度的清除率和大气颗粒物前一日的平均浓度有较好的正相关性。降水对大气颗粒物的清除可分为清除、回升和平稳3个阶段,各个阶段大气颗粒物的变化趋势不同。降水对于大气气溶胶化学组分和酸碱性的改变具有明显作用,对于大气颗粒物各种组分的清除效果不完全相同。对于大气中OC、NO3-、SO42-和NH4+去除率较高,且这4种组分主要以颗粒态形式被冲刷进入降水中,加剧了北京市降水酸化程度。  相似文献   

19.
基于区域PM_(2.5)时空建模和预测的需要及PM_(2.5)浓度呈现明显的时空分布趋势的状况,以苏南地区2014年PM_(2.5)日监测数据为实验数据,使用回归克里格对区域PM_(2.5)进行时空建模和估值。利用最小二乘法建立了PM_(2.5)与时空位置的三元二次回归趋势模型,建模点趋势值与实测值间的平均误差接近于0,表明趋势模型拟合效果较好;拟合了样点残差的理论变异函数模型,表明该地区PM_(2.5)的空间和时间相关性范围分别为150 km和4 d;基于该模型,使用时空普通克里格对残差进行时空插值;插值结果与趋势项相加,得到PM_(2.5)回归克里格估值结果;通过对比不考虑趋势的时空普通克里格估值结果,发现考虑时空趋势的时空回归克里格法精度提高了1. 29%。对所提方法进行了创新性分析,并对不足之处进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号