首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
南昌市周边农田土壤中多环芳烃的污染特征及来源分析   总被引:5,自引:0,他引:5  
采集南昌市周边三个县的18个农田表层土壤样品,采用液固萃取-层析净化-高效液相色谱分析技术,研究了土壤中16种优控多环芳烃类物质的含量和组分特征,运用主成分因子荷载方法分析了其污染来源,并初步评价了其风险水平。结果表明,该区域内农田土壤33.3%轻度污染,最高污染样点PAHs含量为422.8ng/g,最低污染样点PAHs含量为75.2ng/g,平均含量为197.9ng/g,且远离城市的农田土壤残留水平明显低于靠近城市的农田土壤;PAHs的组分特征为以毒性水平较低的低环化合物为主;其污染来源主要是煤、天然气和汽油燃烧组成的混合源。  相似文献   

2.
研究了某地区农田表层土壤中16种PAHs污染状况和来源。结果表明,研究区2012和2016年土壤中PAHs总平均值分别为1 748和3 248 ng/g,其值显著高于其他文献研究区。指出,研究区土壤已受到PAHs的污染,土壤中PAHs以3环、4环为主,Bb F、Ba P、Phe、Ba A、Fla、Pyr、Chr、Flu等质量比相对较高,其污染源主要为焦化、煤和天然气的燃烧,此外交通源对多环芳烃污染也有一定的贡献。  相似文献   

3.
天津城郊土壤中PAHs含量特征及来源解析   总被引:4,自引:1,他引:3  
以天津市郊环城四区为研究对象,系统采集了环城四区95个表层土壤样品,利用高效液相色谱仪对16种PAHs进行分析测定,结果表明,西青、东丽、津南和北辰土壤中16种PAHs的总量范围分别为62.6~1 994.9、36.1~4 074.7、20.1~2 502.5、22.1~707.7μg/kg;平均含量分别为445.8、841.8、509.5、242.5μg/kg。四区中都以高环多环芳烃为主,西青、东丽、北辰和津南高环多环芳烃分别占多环芳烃总比例的45.4%、42.2%、38.8%和38.7%。空间分析的结果表明,靠近天津市市区样点土壤中多环芳烃的含量要明显高于远离市区土壤中多环芳烃的含量。利用环数PAHs的相对丰度和比值法对天津市郊环城四区土壤中多环芳烃的污染来源进行了解析,研究区土壤监测样点的PAHs主要来自燃烧源,少部分来自石油类来源或几种污染源的共同复合累加的作用。  相似文献   

4.
利用高效液相色谱分析技术对福建省茶园土壤中16种多环芳烃进行了定量分析,结果表明,PAHs的总量在0.622~812.0μg/kg之间,平均值为48.4μg/kg。其组成以3环的为主,4环次之,主成分分析和PAHs特征参数分析发现,福建省茶园土壤中多环芳烃主要以燃油、木柴和煤燃烧来源为主,部分样点存在油类排放污染。生态风险评价结果显示,福建省茶园土壤中多环芳烃已具有不利生物影响效应。  相似文献   

5.
采用HPLC定量检出京杭大运河扬州段表层沉积物中16 种优控PAHs 的总量范围在505~4532.2ng/g (干重) 之间,平均值为2359.4ng/g,属中等污染水平,沉积物中的多环芳烃主要来源于煤炭、木材及石油的不完全燃烧;利用沉积物质量基准法(SQGs)对京杭大运河扬州段沉积物中多环芳烃的风险评价表明, 严重的多环芳烃生态风险在京杭大运河扬州段沉积物中不存在,负面生物毒性效应会偶尔发生, 风险主要来源于低环的多环芳烃。  相似文献   

6.
中国表层水体沉积物中多环芳烃源解析及评价   总被引:3,自引:2,他引:1  
采用索氏提取气相色谱-质谱法测定中国6个重点水体表层沉积物中16种多环芳烃的含量。各化合物含量范围分别为长江6.20~163 ng/g、淮河7.90~249 ng/g、海河12.1~401 ng/g、松花江5.75~152 ng/g、太湖29.1~2 810 ng/g和滇池19.1~795ng/g;16种多环芳烃的总量分别为:长江1 147 ng/g、淮河1 723 ng/g、海河2 595 ng/g、松花江793 ng/g、太湖12472 ng/g、滇池3 714 ng/g,属中等污染水平。利用特征分子比值法分析结果表明6条水体表层沉积物中PAHs均可能以燃料(包括柴油、汽油、煤、木材)燃烧以及焦化污染为主。淮河和滇池还可能存在轻微石油泄漏污染。利用沉积物质量基准法(SQGs)和沉积物质量标准法分别对6条水体表层沉积物中多环芳烃的风险评估表明严重的多环芳烃生态风险在这些水体表层沉积物中不存在,但长江、淮河、松花江、海河均可能存在一定的潜在风险,负面生物毒性效应会偶尔发生,风险主要来源于荧蒽和菲。太湖和滇池水体中存在的潜在多环芳烃风险种类较多,风险主要来源于菲、荧蒽、芘、苯并(a)蒽、苊和蒽,对水生生物毒性效应较高,有必要进行更深入细致的调查研究高风险区域底栖生物的受损状况、污染来源和途径,以制定合理的污染控制对策。  相似文献   

7.
研究对比了山东省不同类型污染企业周边土壤中16种多环芳烃(PAHs)的污染水平,结果表明:化工、钢铁、焦化企业周边土壤中ΣPAHs范围分别为41.4μg/kg~804μg/kg、1 230μg/kg~1 945μg/kg和776μg/kg~1 299μg/kg,土壤中PAHs成分谱轮廓相似,4~6环PAHs占比普遍高于2~3环。特征比值法源解析表明,PAHs主要来源于煤、焦炉、木材等的不完全燃烧。企业周边土壤PAHs污染与企业产业结构有关,钢铁、焦化、石化等大量消耗化石燃料的企业周边土壤中10种PAHs的毒性当量浓度TEQ_(Bap)超标0.6倍~3.8倍,而高分子化工、精细化工、农药化工等企业周边土壤受PAHs污染较轻,均满足荷兰土壤质量标准。  相似文献   

8.
通过对A、B两地农田土壤及其潜在污染源燃煤尘、交通尘和尾气尘等样品中多环芳烃(PAHs)的检测,结果表明,A、B两地土壤样品中∑PAHs范围分别为290 ng/g~2. 53× 10~3ng/g和564 ng/g~5. 50× 10~3ng/g,污染程度为中等—严重,且呈现出由工业园区周边土壤到化工企业周边土壤至油田周边土壤逐渐加重的趋势。A、B两地不同固体样品中∑PAHs由高到低分别为尾气尘交通尘燃煤尘土壤和尾气尘交通尘土壤燃煤尘。源解析表明,研究区土壤中PAHs受混合源(石油源和燃烧源)污染。燃烧源既有石油及其精炼产品的燃烧,又有木材、煤燃烧。  相似文献   

9.
淮南市春季大气PM 10 中多环芳烃的污染特征及来源   总被引:3,自引:0,他引:3       下载免费PDF全文
2008年4月-2008年6月对淮南市的5个采样点PM10连续采样,分析了其中多环芳烃(PAHs)。PAHs质量浓度的最大值和最小值分别为112ng/m^3和15.2ng/m^3,PAHs春季质量浓度均值为40.2ng/m^3;PAHs组成以4环和5环为主;春季不同采样点PAHs质量浓度与环境温度呈负相关关系,运用PAHs比值综合判断,淮南市春季大气PM10中PAHs主要来源于燃煤和机动车尾气。  相似文献   

10.
石油化工园区周边土壤中多环芳烃的分布研究   总被引:3,自引:1,他引:2  
采集锦州市石油六厂工业区、交通运输区及农业区土壤,采用高效液相色谱/质谱联用仪分析测定土样中16种PAHs的总含量(∑PAHs):工业区均值为386.19μg/kg、交通运输区均值为328.54μg/kg、农业区均值为192.64μg/kg;致癌性PAHs的总含量(∑PAHscare):工业区均值为147.97μg/kg、交通运输区均值为131.52μg/kg、农业区均值为73.83μg/kg;不同功能区PAHs成分组成规律基本一致,PAHs以3环和4环为主,土壤中PAHs成分比例规律为4环>3环>2环>5环>6环;无论是土壤中∑PAHs还是∑PAHscare含量规律,都为工业区>交通运输区>农业区。工业区石油类污染较为严重,交通运输区及农业区土壤中PAHs污染主要来源于化石燃料的燃烧及农业用品的施用。  相似文献   

11.
As a heavy industrial city, Liuzhou has been facing a serious pollution problem. It is necessary to take steps to control and prevent environmental pollution wherever possible. Surface soil samples were collected from four communities in Liuzhou City, to determine the concentrations, distributions, sources, and toxicity potential of polycyclic aromatic hydrocarbons (PAHs) present. The mean concentrations of total PAHs in the surface soil are 756.43 ng/g for the heavy industrial area, 605.06 ng/g for the industrial area, 481.24 ng/g for the commercial–cum–residential area, and 49.93 ng/g for the rural area. Both the isomer ratio and principal component analyses for the PAHs prove that these pollutants originate mainly from coal, diesel, gasoline, and natural gas combustion. The pollution hierarchies and toxic equivalency factor of BaP prove that the city is subject to heavy pollution caused by industry, transportation, and daily human activities.  相似文献   

12.
Surface soil (0–20 cm) samples (n?=?143) were collected from vegetable, maize, and paddy farmland used for commercial crops in Liaoning, China. Sixteen priority polycyclic aromatic hydrocarbons (PAHs) listed in US Environmental Protection Agency were analyzed by high-performance liquid chromatography using a fluorescence detector. The soil concentrations of the 16 PAH ranged from 50 to 3,309 ng/g with a mean of 388 ng/g. The highest concentration of total PAHs found in soil of the vegetable farmland was 448 ng/g in average, followed by maize and paddy with total PAHs of 391 and 331 ng/g, respectively. Generally, the low molecular weight PAHs were more predominant than the high molecular weight PAHs in most of the soils. The evaluation of soil PAH contamination based on the Canadian criterion indicated that only naphthalene, phenanthrene, and pyrene were over the target values in several sampling sites. Isomer pair ratios and principal component analysis indicated that biomass and coal combustion were the main sources of PAHs in this area. And the average value of total B[a]Peq concentration in vegetable soils was higher than paddy and maize soils. We suggest that biomass burning should be abolished and commercial farming should be carried out far from the highways to ensure the safety of food products derived from commercial farming.  相似文献   

13.
A multimedia sampling of ambient air, wet deposition, surface water, sediment, soil and biota has been performed at Kosetice background observatory in the southern Czech Republic since 1988. An integrated monitoring approach was applied to assess the current state, anthropogenic impacts, and possible future changes of terrestrial and freshwater environments. Average PCB concentrations in the individual matrices calculated from ten years of sampling on multiple sites varied between 2 ng g(-1) in sediment and 7 ng g(-1) in soil or moss. DDT concentrations were lower in moss and needles (2 ng g(-1) and 4 ng g(-1), respectively) than in sediment (11 ng g(-1)) and soil (20 ng g(-1)), while the HCH level was higher in moss and needles (5 ng g(-1) and 6 ng g(-1), respectively) than in soil or sediment (1 ng g(-1) and 2 ng g(-1), respectively). The highest average level of PAHs was found in soil (600 ng g(-1)), while it was lower in needles (230 ng g(-1)), moss (210 ng g(-1)) or sediment (210 ng g(-1)). Time related trends of concentration levels of persistent organic pollutants in all matrices were investigated. Moss and needle trend patterns resembled those of the ambient air, showing a slight concentration decrease of all compounds, except for hexachlorobenzene. The soil, water and sediment concentrations showed a similar decrease of PAHs, PCBs, and HCHs, but there was no clear trend for DDTs and HCB.  相似文献   

14.
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.  相似文献   

15.
2011年4月通过GC-MS检测和210Pb测年对灌河口海域沉积物(GHES)中的PAHs进行了分析,柱状沉积物中21种PAHs总浓度为21.0~209.0 ng/g,均值为88.1 ng/g,7种致癌PAHs浓度为7.0~90.0 ng/g,其中致癌剂苯并[a]芘浓度为ND~2.0 ng/g。PAHs浓度与沉积物中有机质含量呈低度正相关,与p H无明显相关性。源解析表明,近50年来GHES中的PAHs大部分来自煤和生物质燃烧。近50年来,总PAHs和16种优控PAHs浓度在波动中升高;近年来苊、苊烯、苯并[b]荧蒽、荧蒽、茚并[1,2,3-cd]芘的浓度增高,需查明来源。生态风险评价表明,GHES中以芴为主的负面生物毒性效应会偶尔发生。芴、苯并[b]荧蒽、苯并[k]荧蒽的浓度介于临界与偶然效应浓度值之间,应尽量减少对该海域沉积物的搅动,防止污染物再悬浮导致水体的二次污染。  相似文献   

16.
宣威市和富源县位于我国云南省东北部,是全世界肺癌发病率最高的地区之一。当地居民在不通风的房间内燃烧烟煤做饭或取暖造成了严重的室内空气污染。研究表明,长期暴露在燃煤造成的污染物中是导致两地居民肺癌持续高发的主要原因,多环芳烃是最可疑的致病因子之一。2008年1月,分别用聚胺脂泡沫和玻璃纤维滤膜采集了当地9个点位室内、室外空气中气相和颗粒物相中的多环芳烃,同时采集了对应点位的土壤样品。通过对样品的分析,考察了当地空气和土壤中多环芳烃的污染水平、特征以及来源。结果证明,当地空气和土壤中存在严重的多环芳烃污染,室内污染显著高于室外,然而随着当地工业的发展室外污染同样不可忽视,主成分分析结合比值法证明,当地室内外多环芳烃的主要污染源来自于煤炭的燃烧。对空气颗粒物和土壤中多环芳烃浓度进行了比较,对土壤中多环芳烃的来源进行了验证。  相似文献   

17.
Eighty eight surface soil samples were collected from the Qinghai-Tibetan Plateau (QTP) for determination of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethane and metabolites (DDXs) and hexachlorocyclohexane isomers (HCHs). The measured concentrations were 51.8 ± 38.5 ng g(-1), 0.329 ± 0.818 ng g(-1), and 0.467 ± 0.741 ng g(-1) as means and standard deviations of PAHs, DDXs, and HCHs, respectively, which were 1-2 orders of magnitude lower than those reported for eastern China. Significant differences were also revealed among four sub-areas within QTP. PAHs detected in the samples from the remote sub-areas of T'ang-ku-la/Hoh Xil Mountains and along the Qinghai-Tibet highway in the west and northwest of QTP were 1 order of magnitude lower than those from Lhasa and east Qinghai. The differences in soil OCPs among the sub-areas were 2-7 times. Soil PAHs were significantly correlated with emission density and soil organic carbon content (SOC), while OCPs were correlated significantly with the population density and SOC. Based on the calculated backward air mass trajectories and geographical distributions of emission and population, it was revealed that PAHs and OCPs accumulated in the soils in the west and northwest QTP were primarily from long-range transport and may represent the background levels of East Asia. This part of QTP can also serve as an important receptor area for regional or even global long-range transport study. The elevated concentrations of PAHs and OCPs in Lhasa and east Qinghai were mainly from local sources, while PAHs from adjacent Lanzhou area also contributed considerably to the accumulation of PAHs in east Qinghai.  相似文献   

18.
Surface soil (0-5 cm) samples from 17 sampling sites including different functional areas at Ji'nan city in Shandong Province of China were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). The total PAH concentrations were in the range from 1.31 mg kg(-1) to 254.08 mg kg(-1) (dry weight), and the average level of total PAHs was 23.25 mg kg(-1). The highest total PAHs concentrations were found in steel and iron plant at industrial areas. The total PAHs concentrations in industrial areas were markedly higher than those in other different functional areas. According to comparing total PAHs concentration in Ji'nan city to that of other urban areas, it was found that total PAHs concentrations were 6 to 137 times higher than other areas because of some specific sampling sites such as steel and iron plant and one main roadside. The results showed that PAHs in topsoil of Ji'nan city were suffered from strong pyrogenic influence, especially in industrial areas. However about 52.9% soil samples were mainly originated from both pyrogenic and petrogenic mixed sources based on Flu/Pyr ratios and Phe/Ant ratios. Furthermore, It was found that all individual PAHs except Fle were significantly correlated (P < 0.01) with LMW, HMW, total PAHs and SOM, and individual PAHs except Fle in soils were significantly correlated (P < 0.01) with each other. The nemerow composite index to assess the environmental quality showed that the soil sample of steel and iron plant in industrial areas and one main roadside were heavy pollution of PAHs, and about 47% soil sampling sites were safety, about 53% soil sampling sites were got different grades of PAHs pollution.  相似文献   

19.
Organic contamination in the greenhouse soils from Beijing suburbs, China   总被引:1,自引:0,他引:1  
Selected persistent organic pollutants including HCHs, DDTs and PAHs together with PAEs were determined in the greenhouse soils from Beijing suburbs. The total concentrations were 11.64-29.80 ng g(-1) for HCHs, 18.04-101.33 ng g(-1) for DDTs, 1.34-3.15 microg g(-1) for PAEs and 1.92-7.84 microg g(-1) for PAHs, respectively. Predominance of beta-HCH in all samples was obviously observed, suggesting a lack of new HCHs sources. High concentrations of DDE and DDD in comparison to their parents in the samples indicated that most of the DDT had been transformed into its metabolites. The contamination of PAHs was relatively serious and the most abundant compounds were 4-, 5- and 6-ring unsubstituted PAHs. The profiles reflect the important effect of traffic on the PAHs remaining in greenhouse soils. Three phthalate esters (DIBP, DnBP and DEHP) accounted for more than 97% of the phthalates studied. Analysis of n-alkanes was also performed in order to trace the natural or anthropogenic sources of hydrocarbons. Characterization and identification of these compounds in greenhouse soil may help in development of strategies to be used in monitoring organic pollutants in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号