首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The concentrations of selected heavy metals in the soil and vegetation in the immediate vicinity of a metal scrap recycling factory were determined in the dry and wet seasons using the Atomic Absorption Spectrophotometer. The results showed that the soil pH in all the sites indicated slight acidity (from 5.07 to 6.13), high soil organic matter content (from 2.08 to 5.60 %), and a well-drained soil of sandy loam textural composition. Soil heavy metal content in the dry season were 0.84–3.12 mg/kg for Pb, 0.26–0.46 mg/kg for Cd, 9.19–24.70 mg/kg for Zn, and 1.46–1.97 mg/kg for Cu. These values were higher than those in the wet season which ranged from 0.62–0.69 mg/kg for Pb, 0.67–0.78 mg/kg for Cd, 0.84–1.00 mg/kg for Zn, and 1.26–1.45 mg/kg for Cu. Except for cadmium in the dry season, the highest concentrations occurred in the northern side of the factory for all the elements in both seasons. An increase in the concentrations of the elements up to 350 m in most directions was also observed. There was no specific pattern in the level of the metals in the leaves of the plant used for the study. However, slightly elevated values were observed in the wet season (Pb 0.53 mg/kg, Cd 0.59 mg/kg, Cu 0.88 mg/kg) compared with the dry season values (Pb 0.50 mg/kg, Cd 0.57 mg/kg, Cu 0.83 mg/kg). This study showed that the elevated concentrations of these metals might be associated with the activities from the recycling plant, providing the basis for heavy metal pollution monitoring and control of this locality that is primarily used for agricultural purposes.  相似文献   

2.
The lead–zinc industry in the Bukowno region of southern Poland has polluted the surface layer of the surrounding soils mainly with lead (Pb), cadmium (Cd), zinc (Zn), arsenic (As), and thallium (Tl). Analysis of six soil profiles, taken on the east side of the postflotation waste site of the Mining and Metallurgical Plants ZGH "Boles?aw" in Bukowno, showed that they were podzol soils, taking form of loose sands with neutral pH and reducing conditions. Concentration of organic matter in the horizons ranged from 2 to 80 %. The main components of the mineral soil were quartz, carbonates, K-feldspars, plagioclases, and micas (sericite). The highest total concentrations of metals were found in the O, A, and B horizons. Over 90 % of the Cd content, 80 % of the Pb content, 60 % of the Zn content, ~60 % of the Tl content, and 20 % of the As content occurred as mobile forms. The corresponding total concentrations were 10 mg/kg Cd, 922 mg/kg Pb, 694 mg/kg Zn, <1 mg/kg Tl, and <5 mg/kg As. This can potentially be taken up from the soil and transported in the trophic chain. Comparing the total metal content with the legal limits in Poland, it is observed, that the investigated soils exceeded the permissible levels of Cd, Pb, and Zn for agricultural soils. Arsenic and Tl are not reflected in the chemical quality of soil classifications.  相似文献   

3.
Zn, Cd, Cr, Hg, As (total), Cu, Pb, and Ni levels of the deepwater rose shrimp (Parapenaeus longirostris, Lucas 1846), which were collected from the Tekirda? coast of the Marmara Sea, were evaluated. The Marmara Sea is the recipient of discharges from both land-based sources and the Black Sea Bosphorus stream. There are large numbers of anthropogenic activities in the coastal region of the northern Marmara Sea that include urban effluent, discharges from touristic resorts, agricultural runoff, fishing, and transportation. Heavy metal contamination of water resources may cause critical health problems for the people living around these water bodies. In deepwater rose shrimp (P. longirostris), the highest concentration level detected for Zn was 22.4?±?24.4 mg/kg in winter 2012, Cd 0.106?±?0.01 mg/kg in summer 2012, Cr 0.77?±?0.05 mg/kg in winter 2012, Hg 0.18?±?0.04 mg/kg in summer 2011, As 9.93?±?1.4 mg/kg in spring 2012, Cu 25.48?±?0.3 mg/kg in winter 2012, Pb 2.12?±?0.8 mg/kg in spring, and Ni 19.25?±?7.1 mg/kg in spring. The values of heavy metal analysis were compared to both the Turkish Food Codex (TFC) limits and international standards for human consumption. The Pb, As, and Cu levels were found to be higher than the maximum allowable limits.  相似文献   

4.
Enhancement of multiple heavy metal uptake from municipal solid waste (MSW) compost by Lolium perenne L. in a field experiment was investigated with application of EDTA. EDTA was added in solution at six rates (0–30 mmol kg???1) after 50 days of plant growth. Two weeks later, plants were harvested for the first crop and then all the turfgrasses were mowed. After another 30 days of growth, EDTA was added again at above six rates to the corresponding sites and the second crop was harvested 2 weeks later. The results showed that EDTA significantly increased heavy metal accumulation in both crops of L. perenne. For the first crop, the concentrations of Mn, Ni, Cd, and Pb in the shoots increased remarkably with increasing EDTA supply, peaked at 25 mmol kg???1 EDTA, and shoots of 0–5 cm height (shoots from medium surface to 5 cm height) had higher metal concentrations than 5–10 cm and >10 cm shoots. The highest concentration of Mn, Ni, Cd, and Pb was 2.3-, 2.3-, 2.6-, and 3.2-fold, respectively, in 0–5 cm shoots higher than control. For the second crop, the concentrations of Mn, Cu, and Pb in shoots were, in general, less than those in the first crop. However, the second crop was significantly higher (P?< 0.05) than the first crop in dry biomass, so the total amount of metals removed by the second crop was more than the first crop. In addition, EDTA significantly increased the translocation ratios of most heavy metals from roots to shoots. For the first crop, 38% of the total Zn, 51% of Cd, 49% of Pb, 60% Mn, 55% Ni, and 45% Cu taken up by the plant was translocated in the shoots of 0–5 cm height. Turfgrass would have potential for use in remediation of heavy metals in MSW compost or contaminated soils.  相似文献   

5.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

6.
The contamination levels and ecological risks of heavy metals in the sediments of the Nansi Lake were investigated. The contents of Cd, Cr, Cu, Pb, Zn, Ni, and Co in the surface sediments collected at 20 sites ranged from 0.08 to 1.12, 58.92 to 135.62, 38.09 to 78.65, 24.51 to 53.95, 110.51 to 235.36, 11.30 to 65.40, and 4.12 to 20.14 mg/kg, respectively. The results of partitioning analysis revealed that the proportions of soluble and exchangeable fraction were less than 1 %, the proportions of carbonate, amorphous oxides, organic matter, and crystalline oxides fraction were less than 10 %, and 10.52 % of Cd was associated with carbonate. The average proportions in the residual fraction ranged from 48.62 % for Cu to 73.76 % for Ni, indicating low mobility and bioavailability. The geoaccumulation index (I geo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ) values of the heavy metals in the sediments were not in agreement with each another. The average REF values of Cd and Zn were higher than those of other metals. However, the average PECQ values were higher for Cr and Ni than those of other metals, indicating that these two metals would cause higher adverse biological effects. Therefore, it is suggested that future management and pollution control might focus on Cd, Zn, Cr, and Ni in the sediments of the Nansi Lake.  相似文献   

7.
This study was conducted to evaluate the degree of mobility and fractionation of cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) after the addition of municipal solid sewage sludge (MSS) in a sandy calcareous soil. Treatments were (1) soil application of MSS, (2) soil application of enriched municipal solid waste compost (EMSS), and (3) control soil. The MSS application represented a dose of 200 Mg dry weight per hectare. Soil columns were incubated at room temperature for 15 days and irrigated daily with deionized water to make a total of 505 mm. At the end of leaching experiments, soil samples from each column were divided into 14 layers, each being 1 cm down to 10 and 2.5 cm below that and analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, Ni, and Zn. The fractionation of the heavy metals in the top five layers of the surface soil samples was investigated by the sequential extraction method. All soil layers of the columns receiving MSS and EMSS had significantly higher concentrations of DTPA-extractable heavy metals than control soil. The maximum concentration of heavy metals in treated soil was in the surface layer and declined significantly with depth. Sequential extraction results showed that in the treated soil, a major proportion of Cd, Pb, and Ni was associated with organic matter (OM) and exchangeable (EXCH) fractions, and a major proportion of Cu and Zn was associated with residual (RES) and OM fractions. Based on relative percent, Pb, Cd, and Ni in the EXCH fraction was higher than Cu and Zn in soil leached with MSS and EMSS, suggesting that application of this MSS to a sandy calcareous soil, at the loading rate used here, may pose a risk in terms of groundwater contamination with Pb, Cd, and Ni.  相似文献   

8.
The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn?>?Cu?≈?Pb?>?Ni?≈?Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu?>?Zn?>?Ni?>?Pb?>?Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04–1.19, 0.03–0.12, and 0.01–0.09 μg/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future.  相似文献   

9.
The present study on heavy metal contamination in soil and their accumulation in edible part (leaves) and roots of Spinacia oleracea (Spinach) on irrigation with paper mill effluent (PME)/sewage revealed that there was significant increase in the nickel (Ni, +227.17 %) content of the soil irrigated with PME, whereas in the soil irrigated with sewage chromium (Cr, +274.84 %), iron (Fe, +149.56 %), and cadmium (Cd, +133.39 %), contents were increased appreciably. The value of enrichment factor (EF) for Ni (3.27) indicated moderate enrichment in PME-irrigated soil. The EF of Fe, zinc (Zn), Cd, and Cr were <2 in PME effluent-irrigated soil which showed deficiency of minimal enrichment. In sewage irrigated soil, EF value for Cr, Fe, and Cd indicated moderate enrichment, while the values for Zn and Ni indicated deficiency of minimal enrichment. Among various metallic concentrations, the maximum concentration of Fe was observed in leaves (400.12?±?11.47 mg/kg) and root (301.41?±?13.14 mg/kg) of S. oleracea after irrigation with PME, whereas the maximum concentrations of Fe was found in leaves (400.49?±?5.97 mg/kg) and root (363.94?±?11.37 mg/kg) of S. oleracea after irrigation with sewage for 60 days. The bioaccumulation factor value was found maximum for Cd (2.23) in the plants irrigated with PME while that of Fe (0.90) in the plants irrigated with sewage. The undiluted use of PME/sewage for irrigation increased the concentration of Cr, Cd, Zn, Ni, and Fe metals which were accumulated in S. oleracea, posing a potential threat to human health from this practice of irrigation.  相似文献   

10.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号