首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
固相萃取-高效液相色谱法测定水中磺酰脲类除草剂   总被引:4,自引:2,他引:4  
建立了固相萃取-高效液相色谱测定水中7种磺酰脲类除草剂的方法,考察了降解作用及滤膜对测定的影响.方法在0.30 mg/L~5.00 mg/L之间线性关系良好,7种磺酰脲类除草剂的检出限为0.32 μg/L~0.62 μg/L,RSD为4.4%~7.6%,平均加标回收率为87.9%~102%.  相似文献   

2.
建立了加速溶剂提取、凝胶渗透色谱法净化-超高效液相色谱/串联质谱快速测定土壤中20种磺酰脲类除草剂的方法。土壤经过冷冻干燥、粉碎过筛,用加速溶剂仪提取(ASE),经凝胶渗透色谱净化(GPC),以超高效液相色谱/串联质谱(UPLC-MS/MS)多级监测模式(MRM)外标法进行定性定量分析。结果表明:土壤中20种磺酰脲类除藻剂的检出限为2~5 ng/kg。对同一环境样品进行了3个不同添加量(1、5、10μg/L)的加标回收实验,平均回收率为65. 7%~106. 1%,相对标准偏差为2. 3%~12. 1%。该方法快速、灵敏、准确,可有效应用于土壤中20种磺酰脲类除草剂的快速监测。  相似文献   

3.
以N-(4-异丙基苯基)-N-亚丁基脲分子印迹聚合物为吸附剂,建立了饮用水中苯基脲除草剂的分子印迹固相萃取方法。上样后固相萃取柱依次用2.5mL0.1mol/L盐酸和2.5mL去离子水淋洗,然后氮气吹干,再用1mL含8%乙腈的甲苯溶液淋洗,最后用2mL甲醇洗脱。将建立的方法用于自来水中异丙隆、非草隆、甲氧隆、绿麦隆、枯莠隆、灭草隆、伏草隆、草不隆等8种苯脲类除草剂的测定,除伏草隆和草不隆的回收率较低外,其余6种除草剂的回收率均〉60%。  相似文献   

4.
采用高效液相色谱-二极管阵列检测器对6种PAEs类物质进行测定,并对梯度洗脱条件、流速、检测波长等影响化合物色谱响应的关键参数进行优化。综合考虑样品测试效率、分析精度、实际样品中存在杂质干扰等因素,确定以乙腈-水为流动相进行梯度洗脱,洗脱0~11 min流动相乙腈-水梯度比例为50∶50,11 min后流动相调整为100%乙腈,各化合物均能完全分离;色谱分析流速为0.8 m L/min;PAEs的最佳吸收波长为225 nm。在优化的色谱条件下,6种PAEs的线性良好,相关系数均大于0.999 8,仪器检出限为0.08~0.12 mg/L,保留时间、峰面积的相对标准偏差分别为0.02%~0.60%、0.13%~0.86%。方法灵敏度较高,适合土壤等邻苯二甲酸酯含量较高基质样品的快速分析。  相似文献   

5.
采用固相萃取-高效液相色谱-串联质谱法(SPE-HPLC-MS/MS)建立了地表水中25种抗生素类药物和8种非抗生素类药物的分析方法。通过重点优化质谱参数、色谱条件、样品pH、洗脱溶剂组成及用量等确定了最佳分析条件。水样经过滤、固相萃取柱富集净化后,选择Shim-pack XR-ODS为色谱柱,以乙腈和0.2%甲酸-2 mmol/L乙酸铵-水溶液为流动相进行梯度洗脱,采用电喷雾电离源,在多反应监测模式下(MRM)分析测定,内标法定量。33种药物的仪器定量限为0.012~4.68 ng/L,方法检出限为0.011~7.60 ng/L,地表水加标回收率为53.7%~122%,相对标准偏差为1.22%~32.1%(n=6)。方法成功应用于北京市凉水河12个地表水样分析,共检出32种药物,检出质量浓度为未检出~239 ng/L。利托那韦(RTV)作为新型冠状病毒诊疗方案中推荐的药物在凉水河检出率为100%。  相似文献   

6.
本研究建立了固相萃取结合高效液相色谱-串联质谱法测定水样中苯胺类化合物的方法,水样前处理使用PCX固相萃取小柱吸附苯胺类化合物,以甲醇溶剂洗脱,采用ZORBAX Eclipse Plus C18色谱柱,电喷雾质谱正离子模式,以乙腈-0. 2%甲酸水为流动相,梯度洗脱,同时测定水样中12种苯胺类化合物。结果显示,进水中12种苯胺类化合物加标回收率62.3%~119%,日内精密度为2.55%~11.8%,日间精密度为4.17%~13.6%;出水中12种苯胺类化合物加标回收率为70.5%~115%,日内精密度为2.49%~10.5%,日间精密度为3.01%~15.5%;12种物质的检出限为0.25~1.97μg/L。该方法操作简单、结果准确,能够满足水样中12种苯胺类化合物的定性定量测定,可同时处理大批样品。用该方法对江苏省淮安市18家污水处理厂的进、出水样进行了测定,12种苯胺类化合物在18个采样点均能检出,其中N,N-二乙基间甲苯胺检出水平最高,平均值为15.29ng/L,2,6-二甲基苯胺同样检出水平最低,平均值为5.22 ng/L。采用风险商值法评估对12种苯胺类化合物进行了生态风险评估,结果表明二苯胺、苯胺和间甲苯胺为中等潜在生态风险,其他均为低生态风险。  相似文献   

7.
建立了地表水中9种性激素的固相萃取-超高效液相色谱-串联质谱检测方法。利用HLB固相萃取柱富集水体中痕量性激素,用甲醇洗脱并浓缩,再以1 mmol/L氟化铵-乙腈为流动相,经C_(18)柱分离,采用电喷雾离子源、质谱多反应监测模式,内标法定量,实现了地表水中9种性激素的同时检测。方法检出限为0. 1~1. 8 ng/L,在低、中、高3个加标水平下,性激素的平均回收率为69. 6%~115. 0%,相对标准偏差为3. 2%~17. 7%。该方法灵敏度高,定性准确,操作简单高效,适用于地表水中9种性激素的定性定量分析。  相似文献   

8.
建立一种快速溶剂萃取(ASE)-凝胶净化(GPC)-高效液相色谱(HPLC)法测定土壤中6种邻苯二甲酸酯(PAEs)的方法。土壤样品经二氯甲烷-丙酮(体积比为1∶1)快速溶剂萃取后,过Bio-Beads SX-3凝胶层析柱净化,收集12~28 min的GPC洗脱液,并进行HPLC-DAD检测分析。通过分段收集,消除了土壤中共存的16种多环芳烃在225 nm紫外波长下对6种PAEs测定的干扰。采用ZORBAX Eclipse Plus C_(18)(150×4.6 mm,5μm)反相色谱柱,以乙腈-水为流动相进行梯度洗脱,流速为1 mL/min。结果表明,6种PAEs的线性关系良好,相关系数大于0.999 9,方法检出限为2.7~11.5μg/kg,精密度的相对标准偏差为1.5%~9.5%,加标回收率为66.5%~102%。该方法适用于含多环芳烃的土壤中PAEs的准确测定。  相似文献   

9.
多种水样和植物样品中苯脲类除草剂残留分析研究进展   总被引:1,自引:0,他引:1  
综述多种水样和植物样品中苯脲类除草剂残留分析的研究,概述了苯脲类除草剂的理化性质、残留特性等,着重以表格形式列出了气相色谱(包括气-质联用)、液相色谱(包括液-质联用)的分析方法,还介绍了毛细管电泳、免疫技术等分析手段并且阐述了各自的优缺点,最后进行了展望.  相似文献   

10.
通过对色谱分析和样品萃取条件的选择和优化,建立了同时分析水中11种苯胺类化合物的HPLC方法。样品经乙腈盐析萃取后直接进样分析,采用 ODS色谱柱,以乙腈-水为流动相进行梯度洗脱,用PDA检测。结果表明,11种苯胺类化合物在0.20~100mg/L范围内其浓度和检测信号呈良好的线性关系,方法检出限为0.002~0.007mg/L,地表水和废水样品加标回收率为81.6%~97.4%,相对标准偏差为1.5%~5.5%。  相似文献   

11.
次氯酸钠衍生-气相色谱法测定水中苦味酸   总被引:1,自引:0,他引:1  
采用次氯酸钠衍生、毛细管柱气相色谱电子捕获检测器测定水中苦味酸,选择正己烷为萃取剂,萃取时间5 min,衍生反应时间40 min。方法在5.00μg/L~100μg/L范围内线性良好,检出限为0.2μg/L,空白加标水样平行测定的RSD为2.2%,加标回收率为89.6%~95.0%。  相似文献   

12.
高效液相色谱-原子荧光光谱联用分析土壤中形态砷   总被引:2,自引:0,他引:2  
采用高效液相色谱(HPLC)-原子荧光光谱(AFS)联用技术分析土壤中亚砷酸盐[As(Ⅲ)]、二甲基砷(DMA)、一甲基砷(MMA)和砷酸盐[As(Ⅴ)]等4种形态砷,以磷酸为提取剂、抗坏血酸为还原剂,优化了水浴提取条件。As(Ⅲ)、DMA、MMA和As(Ⅴ)在7 min之内实现了完全分离,在1.00μg/L~100μg/L范围内线性良好,实验室检出限分别为0.25μg/L、0.36μg/L、0.39μg/L和0.51μg/L,土壤标准样品平行测定的RSD≤7.4%,加标回收率为79.5%~95.0%,提取率为74.6%~90.4%。  相似文献   

13.
建立了固相微萃取-气相色谱法测定水中痕量甲萘威的方法,并对固相微萃取条件进行了优化。结果显示,固相萃取的最佳条件为:水样pH值≤3,不添加无机盐,聚二甲基硅氧烷(PDMS,100μm)作为萃取纤维,萃取温度为80℃,萃取时间为30 min,解吸时间为90 s。优化后的方法,在甲萘威质量浓度0.01~1.0 mg/L范围内线性良好,相关系数为0.999 5,方法的精密度为1.9%,检出限为0.3μg/L,加标回收率为85.6%~92.4%,可满足地表水中甲萘威的测定要求。  相似文献   

14.
液液萃取-高效液相色谱法测定水中四乙基铅   总被引:2,自引:0,他引:2  
采用高效液相色谱紫外检测器测定水中四乙基铅,用二氯甲烷液液萃取,以甲醇/水混合溶液(体积比为95:5)为流动相,Z0RBAX Eclipse XDB-C18色谱柱分离,选择测定波长为280 nm.方法在0.100mg/L~1.00mg/L范围内线性良好,检出限和测定下限分别为0.01μg/L和0.04μg/L,水样平行...  相似文献   

15.
高效液相色谱法测定土壤中三嗪类除草剂   总被引:4,自引:0,他引:4       下载免费PDF全文
建立了索氏提取、中性氧化铝小柱净化、高效液相色谱二极管阵列检测器测定土壤中7种三嗪类除草剂的方法,优化了检测波长、提取方法和溶剂、梯度淋洗程序等试验条件。7种三嗪类除草剂在0.10mg/L~2.00mg/L范围内线性良好,检出限为0.84μg/kg~2.07μg/kg,RSD为1.2%~5.6%,加标回收率为95.0%~107%。  相似文献   

16.
The purpose of this study was to investigate the potential risk of pretilachlor, thiobencarb, and propanil pollutants in the water system of the rice fields of the Muda area. The study included two areas that used different irrigation systems namely non-recycled (N-RCL) and recycled (RCL) water. Regular water sampling was carried out at the drainage canals during the weeding period from September to October 2006 in the main season of 2006/2007 and April-May 2007 in off season of 2007. The herbicides were extracted by the solid-phase extraction method and identified using a GC-ECD. Results showed that the procedure for identification of the three herbicides was acceptable based on the recovery test values, which ranged from 84.1% to 96.9%. A wide distribution pattern where more than 79% of the water samples contained the herbicide pollutants was observed at both the areas where N-RCL and RCL water was supplied for the two seasons. During September to October 2006, high weedicide residue concentration was observed at the N-RCL area and it ranged from 0.05 to 1.00 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. In the case of the area with RCL water, the weedicide residue ranged from 1 to 5 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. The highest residue level reached was 25-50, 50-100, and 100-200 μg/L for pretilachlor, propanil, and thiobencarb, respectively. During April to May 2007, high residue concentration frequently occurred at the area supplied with N-RCL irrigation water and it ranged from 0.05 to 1.00, 10 to 25, and 25 to 50 μg/L for pretilachlor, propanil, and thiobencarb, respectively. The highest residue level reached was 25-50 μg/L for pretilachlor and 100-200 μg/L for propanil and thiobencarb. There was an accelerated increase in the concentration of the herbicide residues, with the maximum levels reached at the early period of weedicide application, followed by a sharp decrease after the rice fields were completely covered with the rice crop. During the main season of 2006/2007, the concentration of propanil residue gradually rose, although that of the other herbicides declined.  相似文献   

17.
采用固相萃取-高效液相色谱(SPE - HPLC)二极管阵列检测器同时测定水中呋喃丹、甲萘威和阿特拉津,以甲醇-水为流动相,采用梯度洗脱方式,选择220 nm为检测波长,二氯甲烷为洗脱剂.呋喃丹在0.200 mg/L ~5.00 mg/L、甲萘威和阿特拉津在0.020 mg/L~5.00 mg/L范围内线性良好,检出限...  相似文献   

18.
采用固相萃取-气相色谱/质谱法测定水中15种酞酸酯类化合物,确定方法的最优条件为:依次用10 m L正己烷和丙酮混合溶剂(V/V=5∶1)、甲醇和空白试剂水活化C18固相萃取柱后,水样以5 m L/min过柱萃取,再以8 m L正己烷:丙酮(V/V=5∶1)混合溶剂洗脱后,浓缩至1 m L,进气相色谱/质谱测定。该法的检出限为0.18~0.38μg/L,在0.50~20.0 mg/L范围内线性良好,相关系数均0.996。空白水样的加标回收率为71.8%~120%,相对标准偏差为1.73%~12.7%;实际废水水样的加标回收率为64.8%~135%,相对标准偏差为2.75%~18.0%。  相似文献   

19.
气相色谱法同时测定水中28种多氯联苯单体   总被引:3,自引:0,他引:3  
采用液液萃取-浓硫酸磺化净化-气相色谱电子捕获检测器同时测定水中28种多氯联苯单体,必要时利用质谱选择离子监测模式定性,考察了萃取溶剂种类和体积及盐析效应对测定的影响,比较了硫酸磺化和弗罗里硅土柱对萃取液的净化效果。方法在1.00μg/L~47.6μg/L范围内线性良好,当取样体积为200 mL时,方法检出限为0.001μg/L~0.002μg/L,基体加标回收率为95.8%~103%,相对标准偏差≤18.7%。  相似文献   

20.
基于固相微萃取技术的GC法测定水中多环芳烃   总被引:1,自引:0,他引:1  
采取新型大容量固相微萃取器与热解吸/气相色谱联用技术,测定饮用水源地水样中的多环芳烃(主要是微量的萘、联苯及菲)。其实验最佳萃取时间为90 min,最佳解吸时间为5 min。该方法的回收率在68.2%~112.2%之间,最低检出限在2.0~3.0μg/L之间,并对饮用水源地的水质进行了检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号