首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Leaves of the deciduous tree species, horse chestnut (Aesculus hippocastanum L.) and Turkish hazel (Corylus colurna L.) were used as accumulative biomonitors of trace metal pollution in the urban area of Belgrade. Using differential pulse anodic stripping voltametry, trace metal concentrations (Pb, Cu, Zn, Cd) were determined at the single leaf level (ten leaves per species, per month), during two successive years with markedly different atmospheric level of trace metals. Increased trace metal concentrations in the leaves of A. hippocastanum reflected elevated atmospheric trace metal pollution, whereas C. colurna L. did not respond accordingly. The contents of Pb and Zn in soil over the same period also followed this trend. Anatomical analyses, in young as well as in old leaves of both species, indicated typical foliar injuries of plants exposed to stressful air conditions. Water relations that correspond to leaf age may have contributed to the considerable trace metal accumulation in leaves.  相似文献   

2.
A comparative study of the physico-chemical properties of soil, leafmetal content and foliar surface traits in Lagerstroemia parviflora(L.) Roxb. plants, growing in an iron-rich mineralized and anon-mineralized area was carried out. Metal accumulation wasmaximum in summer; in the peak growing season, it declined duringthe rainy season but picked up again in winter. In leaves sampled froma mineralized region, epidermal cells were much smaller in size buthigher in number per unit area. Changes in the number and size of glandular papillae were also observed. Characteristic non-glandular,elongate trichomes with acute tip were also recorded in mineralizedpopulations. Scanning electron microscopic examination of the foliarsurface configuration revealed distortions in epicuticular wax structuresand wider cuticular striations with typically parallel arrangement inthese populations.The present study shows that high Fe-accumulation in leaves of L.parviflora during the exponential growth phase as well as changes inthe epicuticular structures may be indicators of metal stress in the populations of the mineralized area.  相似文献   

3.
PM2.5 aerosol samples were collected at Gosan in Jeju Island during six intensive measurement periods between November 2001 and August 2003. In order to investigate the chemical composition of fine particles, major ion components, trace elements, and elemental and organic carbon were analyzed. Quite different seasonal characteristic in the chemical composition of fine particles was observed. The concentration of most secondary aerosol components showed a summer minimum and a winter maximum with higher correlation between them at Gosan. This fact clearly reveals the possibility of long-range transport of such pollutants in winter. On the other hand, OC and EC had the highest concentration and good correlation with ion components, such as K+, Ca2+ in fall. It means that biomass burning could significantly influence the ambient fine carbonaceous particulate in fall, which was primarily long-range transported.  相似文献   

4.
This study was conducted in the urban environment of Varanasi, India, to evaluate the plant responses to urban air pollution. Twenty sites were selected in four different zones of the city. At each site, seven woody perennials of same age classes were selected. Out of the four zones (I, II, III and IV), zone IV was used as a reference (control) zone as it received the minimum pollution input. Plant species growing in polluted and control areas were compared with respect to foliar dust load, per cent leaf area injury, leaf area, specific leaf weight and chlorophyll, ascorbic acid, SO 4 2– S and total N concentration in the leaves. Results indicated that the air pollution level in Varanasi causes leaf damage, reduces leaf area, specific leaf weight and chlorophyll, ascorbic acid and total N concentrations in the leaves. Sulphur concentration in leaves increased with increasing level of SO2 in the ambient air. The magnitude of such changes was maximum at the zone receiving maximum pollution load. Carissa carandas was found to be the most sensitive species and Bougainvillea spectabilis, the least. The study shows that the urban air pollution level in Varanasi is detrimental for the growth of plants involved in this study.  相似文献   

5.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

6.
The present experiment was done to evaluate the impact of ambient air pollution on carrot (Dacus carotavar. Pusa Kesar) plants using open top chambers (OTCs) ventilated with ambient (NFCs) or charcoal filtered air (FCs) at a suburban site of Varanasi, India. Various morphological, physiological and biochemical characteristics of the plants were studied at different growth stages. Air monitoring data clearly showed high concentrations of SO2, NO2and O3in the ambient air of study site. SO2and NO2concentrations were higher during early growth stages of carrot, whereas O3concentration was highest during later growth stages. Filtration of air has caused significant reductions in all the three pollutant concentrations in FCs as compared to NFCs.Plants growing in FCs showed significantly higher photosynthetic rate, stomatal conductance, water use efficiency and variable fluorescence as compared to plants growing in NFCs. Protein content also showed a similar pattern, however, lipid peroxidation, ascorbic acid content and peroxidase activity were higher in plants growing in NFCs as compared to FCs. Shoot length, number of leaves per plant, leaf area and root and shoot weight increased significantly upon filtration of ambient air. Total nitrogen decreased significantly in root, but increased significantly in shoot of plants grown in NFCs. Total P, Mg, Ca and K contents decreased significantly in plants grown in NFCs as compared to FCs. The individual pollutant concentrations were below threshold for plant injury, but the combined effect of all the three seems to act synergistically in causing greater adverse impact on dry weight and physiology of carrot plants. The study clearly indicates that air pollutants are high enough in the ambient air to cause significant unfavorable impact on carrot plants. The work further supports the usefulness of OTCs for assessing air pollution damage under field conditions in developing countries.  相似文献   

7.
Sulphur dioxide (SO2) is one of the main atmospheric pollutants in central Taiwan. This article analyses the SO2 concentration seasonal variations and spatial distribution using data obtained from ten air quality monitoring stations and the Taiwan Weather Bureau. It reveals that SO2 concentration is high in winter and low in summer and that high concentration centers are located south of the Taichung coal-fired power plant, the main source of SO2 emissions in the region.The location of high concentration centers changeswith different prevailing winds. SO2 variations due towind direction are not unique. During short periods,when meteorological conditions are constant, variationin the pollution sources cause variations in thespatial distribution. This has been deduced byappreciation of Intervention analysis to time seriesof hourly data.  相似文献   

8.
The evaluation of certain vascular plants that grow in the city of Madrid as biomonitors of SO2 air pollution in urban environments has been carried out. Total concentration of sulphur in leaves of the chosen higher plants as well as other parameters in close relation to this contaminant (visible injury symptoms, chlorophyll a- and b-content and peroxidase activity) have been determined in order to study the spatial distribution and temporal changes in SO2 deposition. Results obtained show that coniferous species such as Pinus pinea, were more sensitive to SO2 atmospheric concentration than leafy species as Quercux ilex subspecies ballota and, in the same way, bush species, such asPyracantha coccinea and Nerium oleander, were more sensitive than wooded species, such as Cedrus deodaraandPinus pinea, respectively. There is a higher accumulation of sulphur in vegetable species located near highways and dense traffic incidence roads and near areas with high density of population. The minimum values for accumulation of SO2 were registered in winter and spring seasons (from January to April) due to the vegetative stop; while maximum values are obtained during the summer season (from June to September), due to the stoma opening. The highest increments in sulphur concentration, calculated as the difference between two consecutive months, are obtained in May and June for all considered species except forCedrus deodara and Pyracantha coccinea, both species have few seasonal changes during the whole year. Some species are more sensitive to natural washing than others, showing a decrease in sulphur concentration after rainfall periods.  相似文献   

9.
The oxides of nitrogen—NO x (NO and NO2)—are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO2 in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 1015 molecules/cm2). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO2 over India show a large seasonal variability that is also observed in the ground NO2 data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO2 (×1015 molecules/cm2) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO2 increases by 0.794 ± 0.12 (×1015 molecules/cm2; annual) per GW compared to a previous estimate of 0.014 (×1015 molecules/cm2) over India. The increase of tropospheric NO2 per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×1015 molecules/cm2) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO2 due to various controlling factors which is discussed here. The recent increasing trend (2005–2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.  相似文献   

10.
The concentrations of ozone, NO2 and SO2, measured with a DOAS system 70 m above ground level in the city of Graz were compared with data from conventional ground stations. The dependence of vertical trace-gas distributions on stability categories and time of the day or year was investigated. Concerning the maximum ozone concentrations in summer, the DOAS data are representative for the ground-level situation. In average, the concentrations 70 m above ground are more than twice the ground-level concentrations. It has been shown that beside the reaction with NO, dry deposition is an important sink for ozone near the surface. The DOAS NO2-concentrations are representative for ground-level conditions in summer, except for the morning maximum of NO2. In winter the DOAS NO2-concentrations amount for 73% of the ground level values in average. Concerning the slow reacting trace gas SO2, the DOAS data are always representative for the ground-level conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号