首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Fluoride Content in Drinking Water Supplies of Riyadh, Saudi Arabia   总被引:2,自引:0,他引:2  
Groundwater supplies about 34% ofthe total water demand for the capital city of SaudiArabia, Riyadh. The other 66% is desalinatedseawater. The fluoride level in Riyadh drinking watersupplies was evaluated. Samples were collected fromselected wells, treatment plants, desalinatedseawater, distribution network and 19 locally producedand imported bottled water. The fluoride level in theinfluent to the seven groundwater treatment plants andtheir final product water were in the range of 0.63–1.6 and 0.23–1.1 mg/L, respectively. Blending of theplants product water with the desalinated seawaterresulted in the fluoride level ranging from 0.01–0.5 mg/Lin the distribution network. Ninety percent of thesamples collected from the distribution network hadfluoride levels less than or equal to the calculatedweighted average value of 0.24 mg/L. The locallyproduced bottled waters as compared to 8 imported oneshave shown fluoride levels in the range of 0.2–0.83and 0.04–0.2 mg/L, respectively. In general, thefluoride level in Riyadh drinking water supplies isbelow the optimum recommended level of 0.7 to1.2 mg/L. It is therefore recommended thatfluoridation be considered in water treatment plants.  相似文献   

2.
Silurian–Ordovician (S–O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3–Cl–Na–Mg–Ca, water is alkaline, and its Ca2+ content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na?+?Ca) and Cl/(Cl?+?HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S–O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F?=?100–400 mg/kg) and K-bentonites (F?=?2,800–4,500 mg/kg) contributes to the formation of F-rich groundwater.  相似文献   

3.
Fluoride concentration in groundwater sources used as major drinking water source in rural area of block Nawa (Nagaur District), Rajasthan was examined and the toxic effects by intake of excess fluoride on rural habitants were studied. In block 13, habitations (30%) were found to have fluoride concentration more than 1.5 mg/l (viz. maximum desirable limit of Indian drinking water standards IS 10500, 1999). In five habitations (11%), fluoride concentration in groundwater is at toxic level (viz. above 3.0 mg/l). The maximum fluoride concentration in the block is 5.91 mg/l from Sirsi village. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by World Health Organization or by Bureau of Indian Standards, the groundwater of about 13 habitations of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water, several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. There is an instant need to take ameliorative steps in this region to prevent the population from fluorosis. Groundwater sources of block Nawa can be used for drinking after an effective treatment in absence of other safe source. The evaluation of various defluoridation methods on the basis of social and economical structure of India reveals that the clay pot chip, activated alumina adsorption, and Nalgonda techniques are the most promising.  相似文献   

4.
菏泽市地处鲁西南高氟地区,其河流中的高浓度氟化物不仅会通过径流过程影响南四湖水质,还会影响当地水生态平衡及人体健康。通过分析菏泽市主要河流中氟化物的时空分布特征,并结合地下水、土壤及废污水调查结果,探讨了影响河流中氟化物分布的主要因素。结果表明:研究区河流中氟化物的平均浓度在0.98~1.45 mg/L之间,氟化物浓度分布呈现出枯水期>平水期>丰水期、下游>上游、支流>干流的特征。氟化物浓度较高的河流呈现高pH、低钙的特点,水化学组分以Na-HCO3型、Na-SO4型为主。河流中氟化物的浓度主要受蒸发浓缩和岩石风化作用的影响。研究区地下水和土壤中氟化物的背景浓度整体较高。枯水期高氟地下水可能通过直接补给河流对河流水体产生影响,丰水期土壤中的氟也会通过径流过程汇入河流。人类工农业生产过程大量开采利用当地高氟地下水,而高氟废水最终则会进入河流,导致河流中氟化物的含量升高。  相似文献   

5.
为考察遂宁市辖区内集中式饮用水水源地污染物钡的分布特征和健康风险水平,通过电感耦合等离子体原子发射光谱法对研究区域内市级、县级和乡镇级所有在用的56个集中式饮用水水源地钡的浓度进行分析检测,借助空间分析与统计分析的结果,探讨了其空间分布和浓度差异,并利用环境健康风险评价模型,对不同类型水源地钡的健康风险进行了评价。结果表明,38个地表水水源地钡的浓度范围为0.065~0.180 mg/L,均值为0.110 mg/L;18个地下水水源地钡的浓度范围为0.027~0.370 mg/L,均值为0.130 mg/L。地表水与地下水水源地间钡的浓度差异具有统计学意义(P0.05),钡的空间分布也存在不同程度的差异性。各水源地中的钡经饮用和皮肤暴露两种途径对成人和儿童所引起的非致癌风险值为1.34×10~(-8)~1.62×10~(-8),远低于推荐的最大可接受风险水平(1.0×10~(-6)),各水源地因污染物钡导致的非致癌风险极低。  相似文献   

6.
The present investigation reports the assessment of hydrochemical/geochemical processes controlling the concentration of fluoride in groundwater of a village in India (Boden block, Orissa). Boden block is one of the severely affected fluoride-contaminated areas in the state of Orissa (India). The sampling and subsequent analysis of water samples of the study area was carried out following standard prescribed methods. The results of the analysis indicate that 36.60% groundwater F concentration exceeds the limit prescribed by the World Health Organization for drinking water. The rock interaction with groundwater containing high concentration of HCO3 and Na+ at a higher pH value of the medium could be one of the important reasons for the release of F from the aquatic matrix into groundwater. Geochemical classification of groundwater based on Chadha rectangular diagram shows that most of the groundwater samples having fluoride concentration more than 1.5 mg L−1 belongs to the Na-K-HCO3 type. The saturation index values evaluated for the groundwater of the study area indicated that it is oversaturated with respect to calcite, whereas the same is undersaturated with respect to fluorite content. The deficiency of calcium ion concentration in the groundwater from calcite precipitation favors fluorite dissolution leading to excess of fluoride concentration. The risk index was calculated as a function of fluoride level in drinking water and morbidity of fluorosis categorizes high risk for villages of Amera and Karlakote panchayat of Boden block.  相似文献   

7.
A study was carried out in the Island and mainland regions of Ramanathapuram District to characterize the physico-chemical characteristics of 87 groundwater samples in Island and 112 groundwater samples in mainland which include pH, EC, TDS, salinity, total alkalinity, calcium hardness, magnesium hardness, total hardness, chloride and fluoride. Heavy inorganic load in majority of the groundwater samples has been estimated due to the salinity, TDS, TH and chloride beyond the threshold level which substantiates the percolation of sea water into the freshwater confined zones. Although the groundwater sources are available in plenty, the scarcity of potable water is most prevalent in this coastal area. The Water Quality Index (WQI) and Langeleir Saturation Index (LSI) have also been calculated to know the potable and corrosive/incrusting nature of the water samples. The statistical tools such as principal component analysis, box plots and correlation matrix have also been used to explain the influence of different physico-chemical parameters with respect to one another among the groundwater samples. The percentage of groundwater samples in mainland was more than that in Island with respect to the acceptable limit of WHO drinking standard, especially in TDS, CH, TH and chloride but the converse is observed in the case of fluoride. About 8 % of the mainland aquifers and 42 % of Island aquifers were identified to have fluoride greater than 1.5 mg/l. The signature of salt-water intrusion is observed from the ratio of Cl/CO 3 2? ?+?HCO3 and TA/TH. A proper management plan to cater potable water to the immediate needs of the people is to be envisaged.  相似文献   

8.
The aim of this study was to estimate the risk for caries and fluorosis in a desertification area, applying the calcium/fluoride concentration ratio of underground water and the quality of water in a selected geographical region. This study was performed in the municipality of São João do Rio do Peixe, located in the tropical semiarid lands of Brazil. A total of 111 groundwater samples were collected. Fluoride concentration varied from 0.11 to 9.33 mg/L. Thirty percent of all samples analyzed showed values above 1.5 mg/L, while 64 % were above the ideal limit of 0.7 mg/L. Mean calcium concentration was 47.6 mg/L, and 14.4 % of all samples presented values above the WHO acceptable limits. The proportional value of calcium/fluoride in water showed that only 12 % of the samples were suitable for dental caries prevention with minimal risk for dental fluorosis. Mapping of the fluoride distribution indicated that approximately 2,465 people could be affected by dental fluorosis and 1,057 people might be affected by skeletal fluorosis. It can be concluded that, in addition to fluoride, many water parameters were not suitable for the drinking water. Mapping out calcium/fluoride ratio may indicate areas of water suitability for caries control, whereas the fluoride concentration solely can indicate the areas with the risk for fluorosis. This approach can be relevant for health authorities for identifying communities where dental caries or dental fluorosis is prevalent.  相似文献   

9.
Serious problems are faced in several parts of the world due to the presence of high concentration of fluoride in drinking water which causes dental and skeletal fluorosis to humans. Nalgonda district in Andhra Pradesh, India is one such region where high concentration of fluoride is present in groundwater. Since there are no major studies in the recent past, the present study was carried out to understand the present status of groundwater quality in Nalgonda and also to assess the possible causes for high concentration of fluoride in groundwater. Samples from 45 wells were collected once every 2 months and analyzed for fluoride concentration using an ion chromatograph. The fluoride concentration in groundwater of this region ranged from 0.1 to 8.8 mg/l with a mean of 1.3 mg/l. About 52% of the samples collected were suitable for human consumption. However, 18% of the samples were having less than the required limit of 0.6 mg/l, and 30% of the samples possessed high concentration of fluoride, i.e., above 1.5 mg/l. Weathering of rocks and evaporation of groundwater are responsible for high fluoride concentration in groundwater of this area apart from anthropogenic activities including irrigation which accelerates weathering of rocks.  相似文献   

10.
Riyadh, Saudi Arabia is supplied with drinking water fromboth desalinated sea water and treated groundwater sources. Sampleswere analysed for NO3 from selected deep and shallow wells, two locations within the city's six groundwater treatment plants, thedesalinated sea water and distribution network. Average nitrateconcentrations (as NO3) were 8.2 and 15.8 mg/L for deep andshallow well waters, respectively. The average nitrate concentrations (asNO3) in the groundwater treatment plants influent waters and thefinal product water were 16.2 and 8.5 mg/L, respectively. Due toblending of the plants' product water with the desalinated sea water, theaverage network nitrate concentration was 4.4 mg/L. The scheduledwater interruption does not seem to cause any appreciable change in thenitrate levels in the distribution network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号