首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用特异性移动床生物膜反应器(SMBBR)结合后置反硝化技术处理高氨氮农药废水,SMBBR选用亲水性更强的SDC-03型填料和特异性DNF409混合菌种,可以实现同步硝化反硝化脱氮。试验考察了DNF409菌种对填料挂膜的影响,不同C/N比对脱氮的影响以及对COD、氨氮、TN的去除率的影响。结果显示,当水力停留时间为8 d,进水COD质量浓度为2 408~7 440 mg/L,氨氮质量浓度为160.21~433.84 mg/L,TN质量浓度为208.27~537.65 mg/L,pH值为7.0~8.5时,AF中外加碳源C/N比值为5时,出水COD质量浓度平均为341.9 mg/L,平均去除率高达92.3%,氨氮质量浓度保持在3.0 mg/L以内,去除率在98%以上,TN质量浓度稳定在40~45 mg/L,去除率在80%以上,达到了《污水综合排放标准》(GB 8978—1996)的三级标准。  相似文献   

2.
为明确厌氧氨氧化和反硝化协同脱氮除碳过程,采用ABR反应器控制进水氨氮和亚硝酸盐氮质量浓度分别为75 mg/L、110 mg/L,研究在不同进水COD浓度下脱氮除碳效果。结果表明,在ABR反应器的不同隔室脱氮除碳途径存在差异,低浓度COD(质量浓度120 mg/L)为Anammox菌和反硝化菌之间良好的协同作用提供了保障从而实现稳定高效脱氮除碳,TN和COD去除率分别在98%和79%以上,但在高进水COD(质量浓度120 mg/L)条件下,异养反硝化作用增强使得COD去除率可达到92%,Anammox受到限制致使总氮去除率降至70%。  相似文献   

3.
采用SBR反应器,以人工模拟高浓度氨氮废水为进水,研究DO质量浓度和碳源投加方式对同步硝化反硝化的影响.结果表明,在连续投加碳源的条件下,当SBR内的DO质量浓度分别为3 mg/L、0.9 mg/L、0.5 mg/L、0.3 mg/L时,都发生了同步硝化反硝化,TN的去除率分别为24.87%、33.80%、37.07%及29.06%;DO质量浓度为0.5mg/L时,TN去除效率最高.SBR内的氨氮负荷可以达到0.64kg N/(m3·d),即使在0.3 mg/L的低溶解氧环境下,COD和氨氮的去除率都可以达到90%以上.控制SBR内DO质量浓度恒定为0.5mg/L,采用一次性投加碳源方式时,TN去除率仅有30.31%;当采用连续投加碳源方式时,TN去除率为50% - 60%;采用半连续投加碳源方式时,TN的去除率可达81.48%.试验过程中,活性污泥絮体粒径为0.2~0.5 mm,大于普通的活性污泥工艺中的絮体.较大的絮体使得絮体内存在较大的缺氧区,有利于取得较高的脱氮效率.  相似文献   

4.
采用有效容积为6.3 L的上流式流化床接种普通污泥,进行了厌氧氨氧化反应器的启动,研究了先富集反硝化污泥再启动厌氧氨氧化反应器的过程特征。首先投配硝氮质量浓度70 mg/L、以葡萄糖为碳源、COD为200 mg/L的模拟废水增强污泥的反硝化能力。运行6 d后,出水硝氮质量浓度在10 mg/L左右,反应器对硝氮的去除率稳定在80%以上,污泥具有较高的反硝化活性。随后投配氨氮质量浓度50~60 mg/L、亚硝氮质量浓度30~58 mg/L的废水进行厌氧氨氧化菌培养。培养一开始出水氨氮质量浓度就比进水低,第31 d氨氮的去除率达到50%以上。逐步提高进水氨氮和亚硝酸氮质量浓度,从100 mg/L、140 mg/L、200 mg/L到420 mg/L,氨氮和亚硝氮去除率亦不断提高。第40 d后,反应器氨氮去除量、亚硝氮去除量和硝氮增加量之比在1∶(1.3±0.2)∶(0.3±0.1)范围内小幅波动,表明厌氧氨氧化反应已经成为反应器内的主导脱氮反应。经过76 d的培养,在进水氨氮和亚硝氮质量浓度分别为405.23 mg/L和488.24 mg/L时,反应器对它们的去除率达到80%和95.22%,最大氮去除速率为0.93 kg/(m3·d)。研究表明,采用上流式流化反应器先富集反硝化菌再培养厌氧氨氧化菌和采用逐步提高进水负荷的启动策略,对于快速培养高活性Anammox污泥、启动反应器是有效的。  相似文献   

5.
以异养硝化-好氧反硝化菌为主体,构建了微氧-缺氧双区式微生物电解池MEC(R1),并以缺氧单区MEC(R2)作为对照组,采用连续进水方式,研究其对低C/N比轻度污染废水的脱氮处理效果及微生物强化机制。结果表明,在进水COD 70~80 mg/L、TN质量浓度35~40 mg/L、电流3m A、溶解氧(DO)质量浓度0. 5~1. 0 mg/L的条件下,连续运行约1个月后,R1出水COD、TN质量浓度即可达到一级A排放标准;当C/N比为2~5时,R1出水TN质量浓度为(4. 90±1. 08)~(14. 50±0. 133) mg/L,COD为(8. 20±2. 36)~(12. 53±5. 03) mg/L,均达到了一级A标准,硝化-好氧反硝化及弱电强化作用是脱氮和COD去除的主要途径。高通量测序分析结果表明,R1中细菌多样性虽与R2相当,但细菌丰富度明显大于R2;而且,R1中的贫营养硝化反硝化菌属Zoogloea丰度明显大于R2,且含有自养型反硝化菌属Moheibacterm、好氧反硝化菌属Ferruginibacter和Denitratisoma及可为反硝化提供聚β-羟丁酸的Plasticicumulans菌属。研究表明双区式MEC可有效处理低COD、低TN、低C/N比的废水,且具有启动快的特点,具有良好的应用潜力。  相似文献   

6.
为了研究厌氧-微氧-好氧系统对垃圾渗滤液厌氧出水高效生物脱氮性能,基于短程硝化反硝化技术,设置5个阶段分析DO质量浓度(0. 2~1. 5 mg/L)、进水C/N(4~8)和亚硝化液回流比(300%~1 500%)对系统的影响,同时,通过快速提高进水NH_4~+-N负荷进一步研究反应器抗负荷冲击能力。结果表明,微氧区添加5 mmol/L KClO_3,能够快速提升系统亚硝化率;微氧区DO质量浓度保持0. 5~1. 0mg/L,亚硝化率高于90%。提高进水C/N和亚硝化液回流比(R)有利于反硝化过程充分进行,好氧池的设置能够使系统保持较高的COD和NH_4~+-N去除率,整个过程系统COD、NH_4~+-N和TN的平均去除率分别达89. 2%、98. 6%和82. 3%。此外,系统在短期负荷冲击下污染物去除率降低,当进水NH_4~+-N负荷快速提升时,TN去除率由90%下降到76%。然而,经过10 d的恢复期,系统可以恢复到原来的状态,并具有较高的性能。  相似文献   

7.
针对餐厨垃圾厌氧消化液高氨氮(NH_4~+-N)浓度、低C/N比的特点,采用部分亚硝化(Partial Nitrification,PN)-厌氧氨氧化(Anaerobic Ammonium O_xidation,ANAMMOX)串联工艺,进行餐厨垃圾厌氧消化液处理可行性分析。利用启动成功的ANAMMOX反应器进行潜能试验,结果表明,该反应器所能承受的最大进水NH_4~+-N和NO_2~--N质量浓度及COD均为300 mg/L,由此确定亚硝化反应器进水NH_4~+-N质量浓度约为600 mg/L,COD为400 mg/L左右。在该进水条件下,调控亚硝化反应器温度为30℃,DO质量浓度为2~3 mg/L,进水pH=7.8~8.3,经过39 d成功启动亚硝化。进一步调控DO质量浓度在0.5~1.0 mg/L,成功实现部分亚硝化,出水NO_2~--N/NH_4~+-N质量浓度比在0.90~1.27,并于第15 d与ANAMMOX反应器联立。串联工艺整体TN去除率为82.5%,且主要由ANAMMOX工艺承担。研究表明,该串联工艺基本实现了餐厨垃圾厌氧消化液联合生物脱氮。  相似文献   

8.
序批式生物膜(SBBR)同步硝化反硝化特性研究   总被引:2,自引:0,他引:2  
采用序批式生物膜法(SBBR)以连续曝气和A/O运行模式处理生活污水,探讨序批式生物膜同步硝化反硝化特性,研究SBBR系统中的DO浓度、C/N比、SRT及运行方式的变化对同步硝化反硝化的影响.结果表明,在进水水质和反应条件相同时,将DO质量浓度控制在2.5 mg/L,C/N比为12~16,出水水质最好,去除率大于80%,TN去除率达到76%.保持SRT约为20 d,可以为SBBR创造一个稳定的同步硝化反硝化环境.连续曝气之前的厌氧搅拌对SBBR同步硝化反硝化有益.实验结果证明,SBBR中的脱氮机理为全程硝化反硝化.  相似文献   

9.
不同类型反应器好氧颗粒污泥培养过程研究   总被引:1,自引:0,他引:1  
在SBR、非理想PF及CSTR反应器中接种普通活性污泥,控制反应条件:溶解氧DO 2.0 mg/L左右,pH值8.0左右,温度(25±0.2)℃,经过80 d左右时间,3个反应器中均成功培养出好氧颗粒污泥,最大颗粒污泥粒径达到2.5 mm左右。成熟好氧颗粒污泥具有较好的COD去除及脱氮能力。SBR反应器COD去除率稳定在95%~97%,氨氮去除率超过92%;PF反应器COD去除率达到95%~98%,氨氮去除率最高为98%;CSTR反应器COD去除率稳定在88%~90%,氨氮去除率超过90%。SBR反应器TN去除率最高,达到70%~78%,PF反应器TN去除率为65%~70%,CSTR反应器TN去除率达到55%~62%。3个反应器均发生全程同步硝化反硝化。  相似文献   

10.
以PBS为载体和碳源的SND系统的脱氮效果研究   总被引:1,自引:0,他引:1  
水产养殖业高速发展所带来的氮素污染问题越来越严重,近年来同步硝化反硝化(Simultaneous Nitrification and Denitrification,SND)脱氮工艺因其良好的脱氮效果引起广泛关注。以人工模拟养殖污水作为原水,研究了以可生物降解材料聚丁二酸丁二醇酯(Polybutylene succinate,PBS)作为碳源和载体的同步硝化反硝化反应器(PBS-SND)的脱氮效果。结果表明,在水力停留时间(Hydraulic Retention Time,HRT)为4 h、进水氨氮(NH+4-N)质量浓度为10 mg/L、硝酸氮(NO-3-N)质量浓度为50 mg/L、溶氧(Dissolve Oxygen,DO)质量浓度为(6.242±1.262)mg/L的条件下,SND反应器可在11 d内成功启动并稳定运行。反应器稳定运行后具有良好的脱氮能力,NH+4-N、NO-3-N和总氮(TN)的去除率分别为66.50%、98.55%、99.10%;反应器内载体表面生物量随空间位置升高逐渐递减,上、中、下三层的PBS颗粒表面的生物量分别为(0.549 6±0.021 7)×109CFU/g PBS、(6.563 9±3.078 1)×109CFU/g PBS、(29.148 7±0.884 7)×109CFU/g PBS。快速硝化测试试验中NH+4-N的去除率为22.93%,快速反硝化测试中NO-3-N的去除率最高达88.90%,其平均去除速率可达到1.481 7 mg/(L·h)。PBS-SND系统可实现低C/N比养殖废水的高效脱氮。  相似文献   

11.
以北方村镇生活污水为研究对象,采用多级垂直流人工湿地进行试验研究,在稳定运行条件下,采用水力停留时间1.5d对系统运行一年,考察了COD、NH_3-N、TN、TP的去除效果。结果表明,湿地系统对COD的去除率大约在87.3%~96.1%范围内,出水COD的浓度保持在7.36~22.96mg/L范围之内,另外,相对于夏季而言,冬季湿地的各格室对COD的平均去除率偏低;出水NH_3-N的浓度均值保持在5.87~24.16mg/L之间,其TN浓度均值保持在4.13~23.13mg/L之间,多级垂直流人工湿地系统在硝化方面效果突出,全面改善了湿地的脱氮水平;系统对TP的平均去除率在87.4%~94.3%之间。  相似文献   

12.
采用A/O生物接触氧化法处理生活污水,考查了系统的挂膜启动以及水力停留时间(HRT)、进水pH值和进水COD浓度对系统去除有机物及脱氮效果的影响。结果表明:15 d左右挂膜成功;HRT=13 h,COD去除率和氨氮去除率可分别达到96.72%、85.43%;系统具有较好的抗冲击负荷能力,COD去除率最低在70%左右,氨氮去除率均大于65%,最佳的进水COD质量浓度应控制在300~500mg/L;pH值变化对氨氮去除率的影响更加明显,pH值在7~8时,COD去除率大于90%,氨氮去除率达68%~80%。  相似文献   

13.
有机碳源对低碳氮比生活污水好氧脱氮的影响   总被引:8,自引:0,他引:8  
利用间歇式生物膜反应器研究了有机碳源对低碳氮比(COD/TN在3左右)实际生活污水好氧脱氮的影响.处理实际生活污水的实验结果表明,在好氧条件下总氮平均去除率为80%.投加葡萄糖进行5个碳氮比的对比实验,随着COD/TN的升高,好氧总氮去除率由67%(COD/TN=1.63)逐渐上升至93.6%(COD/TN=8.43);但是当COD/TN超过8.43后,总氮去除率提高的并不明显(当COD/TN为8.89时,总氮去除率为96.8%).最后进行了不含有机碳源的实验,其好氧总氮平均去除率为24%.综合分析表明,同时硝化反硝化和好氧脱氨共同导致了SBBR处理低碳氮比生活污水的好氧脱氮.此外,在所有实验过程中,好氧脱氮终点在DO和pH的变化曲线上有相应的跃升点.利用该特征点可以实时控制好氧脱氮的反应时间,并有利于实现短程好氧脱氮.  相似文献   

14.
温度和COD对SBR反硝化同时除磷系统除磷能力的影响   总被引:5,自引:1,他引:4  
以除磷脱氮SBR(Sequencing batch reactor)系统作为研究对象,考查了温度和COD对其反硝化,以及除磷能力的影响.结果表明,反硝化除磷适宜温度范围为18~37℃.在此温度范围内反硝化除磷速率随温度升高而提高,而且温度变化基本上不影响反硝化除磷系统PO34-去除量和NO3-转化量之间的定量关系.同时实验还发现,反硝化同时除磷系统比传统的厌氧/好氧除磷系统节省33%的碳耗.当进水PO34--P质量浓度8.0~9.2 mg/L而COD质量浓度低至220~240 mg/L时就可以保证出水PO43--P质量浓度小于0.5 mg/L.而传统的厌氧/好氧SBR除磷脱氮系统则需将进水COD质量浓度提高至350 mg/L时才能实现这一目标.  相似文献   

15.
为适应我国对于污水中含氮污染物指标的排放要求,在上流式高效填料床反硝化反应器中,以C6H12O6和Na2S2O3构建碳源强化下硫自养反硝化系统,探究其对污水处理厂二级出水深度脱氮的效果。结果表明,在进水NO-3-N质量浓度为10.95 mg/L、温度为(25±1)℃条件下,C、N、S质量浓度比为1.3/1/1.9时,NO-3-N去除率在94%以上,TN的平均去除率为92.6%,最佳HRT为2 h,出水pH值始终保持在7.5左右。此外通过对出水SO42-的检测,得出硫自养反硝化对整个系统去除NO-3-N的贡献率随着Na2S2O3投加量的增加而增加;对反应器的沿程处理效果分析发现,NO-3<...  相似文献   

16.
使用缓释碳源生态基质颗粒开展了高氨氮废水脱氮效果实验,比较了装填缓释碳源生态基质的反应器与装填普通砾石填料的反应器对高氨氮废水中各种形态氮的去除效果。生态基质组出水NH3-N和TN去除率分别为49. 08%和58. 32%,明显高于砾石组38. 69%和28. 67%的去除率,硝态氮和亚硝态氮浓度也明显低于砾石组,说明缓释碳源生态基质可显著增强反硝化作用强度。高通量分析结果表明,生态基质组的物种丰富度高于砾石组,其中反硝化菌属相对丰度达到30%以上,生态基质释放的碳源有利于异养反硝化微生物的生长繁殖,使反应器内的微生物群落结构发生显著改变,提高了脱氮效率。  相似文献   

17.
在好氧条件下,向反应器添加悬浮填料进行同时硝化反硝化的试验研究,研究影响生物膜同时硝化反硝化脱氮性能的因素。结果表明,在填料填充率为30%~40%、溶解氧为2~3 mg/L、停留时间为6~8h时,系统对污染物的去除效果较好。  相似文献   

18.
在新型后置反硝化工艺中验证了石油烃类废水治理的可行性并进一步探究p H的影响。结果表明新型后置反硝化工艺能够有效处理石油含烃类废水,稳定运行期COD,氨氮和烃类物质的去除率分别为85.2%,84.1%和86.3%。p H对COD和含烃类物质去除影响较大,而对氨氮去除影响小,并且p H=8是石油含烃类物质废水治理的最佳p H值。当p H值由6升高至8时,NO-3-N出水含量由1.9 mg/L下降至0.98mg/L,而胞内聚合物聚羟基烷酸酯(PHA)的含量却由4.85 mg/g升高至5.62 mg/g,PHA含量升高利用其在好氧和缺氧期分解产能用于反硝化。而过高p H不利于新型后置反硝化工艺烃类物质去除,脱氮和胞内聚合物的合成和积累。  相似文献   

19.
一株异养硝化-好氧反硝化菌JY78的筛选及其脱氮特性研究   总被引:1,自引:0,他引:1  
从水源水库沉积物中筛选出一株高效异养硝化-好氧反硝化细菌JY78,以乙酸钠为碳源,分别以硝酸钠、氯化铵为唯一氮源研究菌株JY78的好氧反硝化、异养硝化特性。结果表明,经过72 h的反硝化过程,JY78对硝氮的去除率达到83.65%,总氮去除率达到58.46%;经过36 h的硝化过程,菌株对氨氮的去除率达到93.53%,总氮去除率达到76.15%。通过形态观察、生理生化分析及16S rRNA测序分析,JY78为不动杆菌Acinetobacter oleivorans。利用响应曲面法研究了p H值、温度、溶解氧和C/N比四因素交互作用对菌株反硝化特性的影响。结果表明,菌株JY78脱氮的最优条件为:C/N比8.0,温度22.57℃,转速37.94 r/min,初始p H值8.15。在此条件下硝氮能够达到最大去除率89.79%。同时,菌株JY78可以耐受低C/N比及低温条件。研究表明,菌株JY78具有突出的异养硝化-好氧反硝化能力,在处理微污染水源水方面具有应用潜力。  相似文献   

20.
以长期运行的闭合式循环水养殖系统(Recirculating Aquaculture System,RAS)中的养殖废水为处理对象,采用序批式厌氧/缺氧/好氧(SBR-A~2/O)工艺研究不同碳磷比(COD/ρ(P))对养殖废水脱氮除磷的影响。结果表明:对于TN在50~70 mg/L的RAS废水,当COD/ρ(P)19.85时,TN和TP去除率较低,随COD/ρ(P)升高,去除率逐渐增加;在COD/ρ(P)≥19.85时,TN和TP去除稳定,平均去除率分别为62.38%±8.33%和62.44%±4.97%。维持COD/ρ(P)在25~30进行试验,RAS废水中各污染物去除稳定,水体中TN、TP、NO-3-N、PO3-4-P、NH_4~+-N和NO-2-N的平均去除率分别为60.61%、62.69%、60.21%、60.46%、45.55%和84.94%。进水为高质量浓度NH_4~+-N((16.07±1.09)mg/L)废水的条件下,COD/ρ(P)22.49时,出水NO-2-N远高于进水,积累明显;COD/ρ(P)≥22.49时,NO-2-N去除率可达100%;NH_4~+-N的平均去除率为87.29%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号