首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
针对循环采动过程中煤层不同方向渗透特征的演化规律问题,以平顶山十二矿己15煤层煤样为研究对象,利用自行研制的应力-渗流-解吸煤体变形试验装置,开展了循环围压加载下煤样不同方向渗透试验。研究结果表明:在相同的轴压、围压和平均孔隙压力下,试样平行层理面方向的渗透率大于垂直层理,平行层理面内的渗透率相差不大。在围压恒定的情况下,通过试样的流量随着渗透压差的增大而增大,且二者之间的关系可以用二次函数描述;围压增加,导致裂隙闭合,渗透率减小,当循环围压大于煤屈服强度和抗压强度时,裂隙扩展,渗透率增加;循环围压加载可以改变煤样原有不同方向渗透率大小顺序,渗透率与原初始渗透率比值随循环加载次数的增加而增大。  相似文献   

2.
为探讨同一应力加卸载作用下不同层理方向裂隙煤体的瓦斯(甲烷)渗透规律,采用自行设计、改装的三轴应力瓦斯渗透模拟装置,在相同瓦斯压力条件下,对平行及垂直层理方向的2种原煤样试件进行试验研究。结果表明,加载过程中,2种试件的渗透率均随有效应力的增大而减小,应力加载至最大值时,渗透率分别下降了99.01%和80.49%;卸载过程中,渗透率随有效应力的减小而增大,卸载初期渗透率变化较小。有效应力从11.65 MPa卸载至8.98 MPa时,渗透率分别恢复到最大应力加载值的87.45%、68.8.5%。当卸载至4.98 MPa时,渗透率的增加幅度分别为736.78%和99.67%。相同的卸载条件下,平行层理裂隙试件的渗透率增幅比垂直层理裂隙试件大得多。  相似文献   

3.
为获取应力加卸载过程中3种不同层理方向裂隙煤体的瓦斯渗透规律,采用应力瓦斯渗透模拟实验装置对加卸载过程平行、斜交及垂直层理方向的原煤试件进行了实验。研究结果表明:加载过程中,3个煤样试件的渗透率与所施加的有效应力成正比,当有效应力最大时平行层理裂隙煤样试件的渗透率的降幅最大,不同层理方向最大渗透率比值为7.2∶1;卸载过程中,渗透率与有效应力之间存在反比关系,在应力卸载初始阶段渗透率增幅不大,当有效应力卸荷到一定程度时,渗透率的增幅陡然增加,相同的卸载条件下,斜交层理试件的渗透率恢复比最大。研究结果可为煤体抽放钻孔布置提供一定参考,以使瓦斯抽采效果最大化。  相似文献   

4.
为研究层理对原煤力学及渗流特性的影响,通过实验对比分析平行层理煤样和垂直层理煤样在相同瓦斯压力、不同围压下的三轴压裂力学及渗流特性,同时采集压裂过程的声发射数据并进行分析。结果表明:随着围压增大,平行层理煤样的峰值轴向应力平均增幅为34.5%,远小于垂直层理煤样的平均增幅161.21%;围压为1,3,5 MPa时,垂直层理煤样的压裂时间分别是平行层理煤样的0.68,0.19,2.72倍,层理方向对力学特性的影响随着围压增加呈先减小后增大的趋势;围压相同时,平行层理煤样的声发射幅值随时间增加而增大,垂直层理煤样的声发射幅值随时间增加表现出正弦波变化趋势,且平行层理煤样在压裂过程中的声发射高幅值事件比垂直层理煤样的多;平行层理煤样的渗透率远大于垂直层理煤样的渗透率,且围压越大,初始渗透率越低,说明平行层理方向的孔隙度大于垂直层理方向的孔隙度。  相似文献   

5.
为了解不同瓦斯压力和孔隙率下原煤的电阻率和渗透率变化及电阻率和渗透率的响应规律,以淮南矿区谢一矿51采区C15煤层煤体为研究对象,研究不同瓦斯压力和孔隙率下煤样三轴压缩全过程的电阻率与渗透率的变化规律。研究结果表明:孔隙率相同时,最小电阻率和最小渗透率随着瓦斯压力的增大先增加后减小,瓦斯压力在4 MPa时,最小渗透率基本为0;瓦斯压力相同时,最小电阻率和最小渗透率随着孔隙率的增大而增大;全应力应变过程电阻率和渗透率满足随应变的增大先减小后增大的规律,不同加载阶段电阻率变化和渗透率变化规律保持一致,渗透率变化幅度比-应变曲线拐点滞后于电阻率变化幅度比-应变曲线;可利用电阻率变化规律反映应力变化以及渗透率变化情况。  相似文献   

6.
为了解不同瓦斯压力和孔隙率下原煤的电阻率和渗透率变化及电阻率和渗透率的响应规律,以淮南矿区谢一矿51采区C15煤层煤体为研究对象,研究不同瓦斯压力和孔隙率下煤样三轴压缩全过程的电阻率与渗透率的变化规律。研究结果表明:孔隙率相同时,最小电阻率和最小渗透率随着瓦斯压力的增大先增加后减小,瓦斯压力在4 MPa时,最小渗透率基本为0;瓦斯压力相同时,最小电阻率和最小渗透率随着孔隙率的增大而增大;全应力应变过程电阻率和渗透率满足随应变的增大先减小后增大的规律,不同加载阶段电阻率变化和渗透率变化规律保持一致,渗透率变化幅度比-应变曲线拐点滞后于电阻率变化幅度比-应变曲线;可利用电阻率变化规律反映应力变化以及渗透率变化情况。  相似文献   

7.
为揭示层理构造对煤体裂隙演化与瓦斯渗流特性的影响机制,优化基于层理构造的瓦斯抽采设计,保障煤矿安全高效生产,利用RFPA2D-Flow软件,在煤体中预制斜交、垂直和平行层理裂隙面的基础上,分别对不同层理煤体的裂隙演化特征、声发射分布规律及瓦斯渗流压力场进行模拟研究,并与试验结果对比。结果表明:不同层理煤样均以剪切破坏为主,但最终破坏形态有明显差别;斜交层理煤样在3条预制层理的中间1条处破坏最明显,而垂直、平行层理煤样的抗压/拉破坏主要在预制层理裂隙面两端和周围;不同层理煤样的瓦斯渗流压力场梯度曲线均在裂隙出现的区域有明显变化,且呈波浪状分布;斜交层理煤样的模拟结果与试验结果基本吻合,验证了模拟的有效性。  相似文献   

8.
为揭示冲击煤样渗透率的变化规律,通过立式分离式霍普金森(SHPB)冲击装置对不同层理方向煤样进行动态冲击,进而采用渗透仪对冲击后的煤样进行渗透率测试,分析不同冲击荷载下煤岩的渗透率及应力敏感性。结果表明:冲击煤样的渗透率远大于原煤样品,冲击载荷越大,渗透率越大;在相同的冲击载荷和气体压力下,平行于层理方向的煤样渗透率最大,其次是斜交45°层理方向的煤样渗透率,垂直于层理方向的煤样渗透率最小;渗透率受有效应力影响显著;在冲击荷载的作用下,垂直于层理方向煤样渗透率的变化率对孔隙压力更为敏感。  相似文献   

9.
为探索同一应力加卸载路径下2种典型煤样(原生结构煤及构造煤)的瓦斯渗透规律,用3轴应力瓦斯渗流模拟装置,对2种原煤试件不同瓦斯压力承压时的瓦斯渗透特性进行试验研究。结果表明,加载阶段,随着加载应力的增大,2种煤样的渗透率均呈下降趋势,且初期降幅最急剧,当围压从0升到3 MPa时,2种煤样的渗透率分别下降64%和70%;卸载阶段,渗透率随着应力的减小而增大,围压完全卸载后,2种煤体的渗透率分别恢复到初始值的25%和50%;在同样的应力条件下,有效应力的增加对原生结构煤的影响作用大于煤基质收缩,渗透率随着瓦斯压力的增加而增大,而对构造煤则相反,渗透率随着瓦斯压力的降低而增大。  相似文献   

10.
构造煤具有瓦斯含量高、渗透率低等特征,是瓦斯抽采和灾害预防的难点。在采用“二次成型”法制取原煤样试件的基础上使用自行设计的“三轴应力瓦斯渗透性模拟实验装置”通过“应力-渗透性”实验,针对构造煤原煤试件不同瓦斯压力条件下的应力加、卸载过程的瓦斯渗透规律进行了研究。实验结果表明:加载阶段,随着加载应力的增大渗透率降低,初期阶段降幅最为急剧,围压升到3 MPa时,渗透率均下降近65%;卸载阶段渗透率随着应力的减小而增大,围压完全卸载后渗透率只恢复到初始值的25%;同样的应力条件下,煤基质收缩对构造煤的影响作用大于有效应力的增加,渗透率随着其内部瓦斯压力的降低而增大。实验结果可为构造煤“卸压增透”效果最佳化提供参考,进一步完善低渗透率煤层的瓦斯抽采理论及方法体系。  相似文献   

11.
张学博      高建良     《中国安全生产科学技术》2017,13(8):152-158
为了研究深部开采松软煤层抽采钻孔变形失稳特性,基于有限元理论和统计损伤理论数值模拟了深部开采松软煤层抽采钻孔变形失稳整个过程,分析了钻孔周围煤体应力及形变分布、卸压区演化和渗透特性。研究表明:钻孔破坏形式为上方发生垮塌,形成垮塌区;左右侧发生破坏,形成破碎区;钻孔周围煤体均向钻孔移动,钻孔附近煤体位移量较大,远处煤体位移量相对较小;钻孔形状由开始的圆形逐渐变成“类橄榄球形”,然后钻孔“类橄榄球形”断面逐渐减小至坍塌。钻孔失稳过程中,钻孔附近煤体渗透率逐渐增大,钻孔周围煤体渗透率变化量及变化范围均不断增加;周围煤体渗透率分布均大致呈“V”字型变化规律,即煤体渗透率呈随着距钻孔距离的增加先减小后增加然后趋于稳定的趋势。研究结果可以为我国煤矿深部开采松软煤层瓦斯治理和煤层瓦斯抽采提供理论支撑,具有指导性意义。  相似文献   

12.
为了研究构造煤原煤样与硬煤原煤样渗透率变化规律的异同,用三轴渗流装置对2种原煤样进行了瓦斯渗透性试验。在改变单一因素条件下,分别研究围压和瓦斯压力对2种煤样渗透性的影响,同时研究轴压加载及卸载过程中2种原煤样的渗透率变化规律。结果表明;瓦斯压力恒定时,2种煤样的渗透率都随围压的增大而减小;围压恒定时,瓦斯压力在0.2~0.6 MPa范围内,2种煤样的渗透率都随瓦斯压力增大而减小;瓦斯压力及围压同时保持恒定时,2种煤样的渗透率都随轴压增大不断减小,2种煤样在卸载阶段渗透率均不断增大,但均没有恢复到加载前的渗透率,构造煤煤样渗透率恢复率比硬煤小,说明构造煤加载过程中发生塑性破坏比例大于硬煤。  相似文献   

13.
热力耦合作用下深部煤层渗流规律试验研究   总被引:2,自引:0,他引:2  
为了进一步揭示深部煤岩渗透率的变化规律,进行了高有效应力和高温条件下煤体渗透规律测定试验.结果表明:随着有效应力的增大,煤层渗透率呈现递减趋势;温度升高,煤体出现膨胀现象,渗透率减小.初步提出了热力耦合作用下含瓦斯煤渗透率影响机理,即温度升高,煤固体骨架膨胀,试件内部孔隙裂隙体积减小,瓦斯渗流通道减小,渗透率减小;有效应力增大,煤体孔隙裂隙被压缩,导致渗透率逐渐减小.  相似文献   

14.
为研究井下卸压抽采时瓦斯流动规律,建立煤层渗透率演化模型。为建该模型将煤体简化为有2组相互垂直节理发育的等效连续介质,假定瓦斯在煤体裂隙中的流动符合立方定律,考虑煤基质对吸附性气体的吸附膨胀作用和外荷载对煤的压缩变形作用,不考虑孔隙压力对裂隙张开的影响。从应力条件和孔隙压力2个方面,结合煤样渗透率试验,对该模型进行有效性验证。结果表明,渗透率模型能反映应力和低孔隙压力对煤样渗透率的影响,但不能体现高孔隙压力对煤样损伤导致的渗透率增大作用。  相似文献   

15.
煤层瓦斯渗透率是瓦斯(煤层气)抽采的重要指标之一,通过渗流模拟-吸附解吸试验装置,研究了型煤煤样在不同围压作用下破碎后卸载轴压围压过程中,以及加载至二次破坏过程中煤样渗透率随应力的变化情况。试验表明:型煤峰值强度后的渗透率较初始状态有所增大,峰值强度后卸载围压和轴压,其渗透率均增大。其后,给煤样固定一个围压加载轴压使煤样发生二次破坏,渗透率先减后增,整体呈U型趋势,且煤样发生二次破坏过程中的渗透率整体上要大于初次破坏过程中的渗透率,通过试验研究为矿井瓦斯抽放和煤层气开采提供了一定理论基础。  相似文献   

16.
针对含瓦斯煤轴压恒定卸围压渗透性演化规律,以新登煤业二1煤原煤样为研究 对象,利用自主研发的含瓦斯煤岩三轴应力蠕变渗流试验装置,开展不同围压下轴向应 力恒定卸围压渗流测试试验。基于实验结果表明:构造煤在应力加载阶段渗透率降低, 且轴压围压同时加载,渗透率变化与轴向应变符合线性变化,轴压加载阶段,渗透率与 轴向应变符合负指数函数变化规律;围压卸载阶段,渗透率在卸围压过程中一直减小, 随着轴向应变的增加,渗透率出现反弹,但未出现突变现象,渗透率增加阶段与时间变 化符合退化的负指数函数关系;构造煤渗透率卸围压失稳后,渗透率没有出现突变原因 认为煤样中没有形成较大的有效渗流通道,且在一定的有效应力作用下瓦斯渗流的有效 通道出现自愈合现象。  相似文献   

17.
采用FLAC~(3D)对复合煤岩模型的单轴压缩破裂进行数值模拟及试验,研究复合煤岩受载破裂应力与应变关系变化规律。针对煤样厚度、复合煤岩组合比、煤层参数、顶底板岩性等参数,对复合煤岩模型进行加载仿真研究,仿真及试验结果表明:单一煤样模型随着高度的减小,应力应变曲线整体阶段存在尺寸效应;改变煤岩组合比例时,其抗压强度基本不变,随煤样比例增大,复合煤岩的整体弹性模量减小,整体刚度减小;单一改变复合煤岩的煤样参数时,随煤样弹性模量增大,复合煤岩的弹性模量越强,应力应变曲线峰值点越高,对应应变越小;单一改变顶底板岩性,对复合煤岩模型的应力应变曲线影响不大。试验结果和仿真结果变化趋势一致,表明所建模型具有一定正确性和适用性。  相似文献   

18.
为了研究循环载荷下的煤体裂隙演化特征,在不同应力水平和不同频率条件下分别进行煤样破坏力学及声发射试验。结果表明:应力-应变曲线呈疏-密-疏的变化特征,对应的振铃数柱状图呈U型;上限应力点的应变值、累积能量、撞击计数均随循环次数增加而上升,曲线呈倒S型;煤裂隙演化经历了原始裂隙闭合、新生裂隙稳定发育和裂纹贯穿破坏等3个不同阶段;循环载荷的应力水平和加载频率对煤体疲劳寿命的影响具有差异性,对煤体裂隙演化和破坏模式均有明显影响。  相似文献   

19.
为研究煤层赋存条件对煤与瓦斯突出危险性的影响,模拟分析不同条件(埋藏深度、煤层厚度和煤体强度)下的应力、瓦斯压力和煤体塑性变形区的分布及变化。结果表明,随埋藏深度的增加,工作面前方应力峰值及应力梯度、瓦斯压力梯度、塑性变形区及塑性应变量等随之增大,煤与瓦斯突出的危险性越来越高;随煤层厚度的增加,工作面应力峰值、应力梯度逐渐减小,出现应力峰值的位置越远离工作面,瓦斯卸压带、瓦斯排放带、塑性变形区越逐渐增大,煤与瓦斯突出的危险性越来越小;随煤体强度的升高,工作面前方应力梯度、瓦斯压力梯度随之增大,塑性变形区和塑性应变值随之减小,煤与瓦斯突出危险性越来越小。  相似文献   

20.
运用自主研制的含瓦斯煤热流固耦合三轴伺服渗流试验装置,以原煤煤样作为研究对象,进行了含瓦斯煤固定轴向压力、卸围压的渗流试验,研究了卸围压过程中瓦斯压力对煤样力学特性和能量特征的影响。结果表明:在轴压加载阶段,煤样的变形模量基本不变,泊松比逐渐减小;在定轴压卸围压阶段,煤样的变形模量先小幅度增加,然后逐渐减小,泊松比则逐渐增大。瓦斯压力越高,煤样的承载能力越低,煤样发生破坏时相应的轴向应变和围压卸荷量百分比越小,而煤样破坏时的径向变形和扩容量越大。各应变围压柔量Δεi与瓦斯压力呈线性关系且线性相关性良好。随瓦斯压力升高,轴向应变的围压敏感性降低,径向应变和体积应变的围压敏感性显著升高。随瓦斯压力升高,煤样发生破坏时存储的弹性应变能Ue减小,而总能量U、耗散能Ud和耗散能比例Ud/U都增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号