首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 94 毫秒
1.
为明确在地面常压环境和商用飞机巡航高度低气压环境下锂电池热失控火灾危险特性随电池数量的变化关系,分别于95 kPa地面常压环境和20 kPa低压环境下,开展不同电池数量梯度的热失控试验,测量热释放速率,总热释放量,烟气温度,CO、CO2和碳氢等气体的实时体积分数。结果表明:最高热释放速率和总热释放量与电池数量均呈幂函数增长,幂函数指数随环境压力降低而减小;随电池数量的增加,95 kPa下燃爆和射流火频发,高温危险性大幅增加,但易燃爆气体峰值浓度相对较低且无明显增加;20 kPa下高温危险性增幅较小较弱,碳氢气体、CO等易燃爆气体体分数大幅增加。  相似文献   

2.
为研究锂电池在民航飞行低压特殊环境的安全性及发生热失控灾害后的高温危险性,通过可模拟飞行变动条件的动压变温实验舱开展系列实验,研究锂电池在不同低压环境下的(101,60,30 kPa)多节18650型锂离子电池热失控温度特性,采集电池池体温度及热失控喷射释放温度等参数。研究结果表明:随环境压力降低,圆柱锂电池间的热失控传播并不能被阻断,但锂电池热失控灾害所释放产生的高温区域减少,且高温持续时间变短,释放所产生温度的高温危险性随环境压力的降低而有所降低。  相似文献   

3.
为研究细水雾灭火系统对18650型锂电池热失控的抑制效果,利用自设计实验平台进行抑爆实验,对比初爆与燃爆两个关键点及有无外部热源的温度变化图。研究表明,细水雾能够明显抑制18650型锂电池热失控,但施加细水雾的时间点对抑制效果影响较大,初爆后施加细水雾能够有效抑制,在燃爆后施加细水雾10s内温度降低200℃以上,但由于锂电池内部电解液复燃的特点,温度回升。温升速率的变化使得电池初爆的时间和温度分别提前了67.4%和44.4%,据此提出通过探测18650型锂电池初爆释放气体发现热失控发生并在最短时间内移除异常行为电池来控制电池热失控及其热量的异常传播。  相似文献   

4.
为研究三元锂离子电池在空运低压环境中的安全性,通过自主设计搭建的封闭式变压实验舱开展相关实验,对不同荷电状态(SOC)下的三元锂离子电池在不同压力环境(101,80,60,40 kPa)下的热失控特性进行研究,采集电池热失控过程中的温度以及实验舱内的压力变化,并对热失控后实验舱内的气体成分进行分析。结果表明:三元锂离子电池热稳定性随着SOC的升高而下降,常压下100%SOC的电池热失控温度可达650.8 ℃,初始环境压力越低,相同SOC的电池热失控最高温度越低。随着环境压力的降低,相同SOC的电池在热失控后会生成更多CO,且电解液占比升高。研究结果可为锂离子电池空运安全性研究提供理论依据。  相似文献   

5.
复合相变材料(PCM)应用于锂电池组的热管理是当前研究的热点。然而,PCM对锂电池组热失控传播特性的影响规律仍不甚明晰。实验研究了不同PCM填充率对锂电池组的影响,分析其热失控触发时间、最高温度、质量损失和热释放速率等参数变化规律。结果发现,添加PCM后,电池表面温度、CO和SO2浓度均出现了不同程度的降低,但对热释放速率没有明显的影响。PCM填充率为0%和10%的电池组均发生了热失控传播,而30%、50%、100%的PCM填充率能有效阻隔热失控传播的发生。  相似文献   

6.
刘全义  韩旭  孙中正  吕志豪 《安全》2019,40(4):42-46
针对锂离子电池热失控引发的航空运输安全问题,自主设计并搭建锂离子电池热失控灾害演化及危险性分析实验平台。在敞开和密封环境体系下,对电加热触发荷电量(State of Charge,SOC)为0%、50%和100%的18650型锂离子电池热失控规律进行了实验研究。观察单体锂离子电池在敞开和密封体系中的热失控现象,并记录单体锂离子电池热失控时间、温度峰值及相应的温度变化。数据结果显示,相比敞开体系,密封体系有效的延缓了锂离子电池发生热失控的时间,并降低了锂离子热失控时释放的能量,为锂离子电池的航空运输安全性研究提供了理论依据和工程技术参考。  相似文献   

7.
为探究不同外热功率(220,170,120,70 W)下锂离子电池的热失控特性,采用动压变温实验舱作为燃爆实验舱,并利用量热仪和ISO-9705烟气分析仪监测特征参数,对荷电状态(SOC)为100%的18650型锂离子电池进行高温热失控实验。结果表明:在不同的外热功率条件下,锂离子电池进入热失控的过程呈现出相似的趋势,但是各阶段的特性却存在差异。池体表面中心温度、HRR,THR和耗氧量均随外热功率的降低而降低。高外热功率下燃爆响应时间点明显提前,池体温度更高,220 W外热功率下,燃爆响时间点为176 s,池体温度为720.6 ℃,比70 W时提前366 s,高210.03 ℃,可见高外热功率时,电池热危害性更高。热解烟气CO的峰值体积百分比浓度随着外热功率的降低而升高,而CxHy的峰值质量百分比浓度降低,,CO2的峰值体积百分比浓度降低。在70 W外热功率时,CO峰值体积百分比浓度高达0.322%,220 W时CO峰值体积百分比浓度仅为0.165%,说明低外热功率时,电池毒危害性更高。  相似文献   

8.
张青松  曹文杰  白伟 《火灾科学》2017,26(4):239-243
为研究细水雾对锂离子电池热失控的抑制作用,利用自设计细水雾实验装置对18650型锂离子电池热失控进行抑制实验,对比两节电池依次燃爆和不同阶段使用细水雾的温度曲线。研究表明,细水雾对于抑制锂离子电池热失控有效,但不同热失控阶段细水雾抑温效果差异较大,结合锂离子电池多米诺效应和机载灭火设备适航性要求,应尽可能将细水雾喷雾时间节点靠近初次爆炸的时间节点。提出通过准确探测初次爆炸发生和进一步增强细水雾抑制作用来控制锂离子电池热失控及多米诺效应的发生和传播。  相似文献   

9.
为解决与锂离子电池热失控有关的空运安全问题,利用自主设计的锂电池火灾试验平台,对不同包装、数量及荷电状态(SOC)的18650型锂离子电池开展燃爆试验研究。观察锂离子电池热失控现象,进行阶段划分,研究锂离子电池热失控传播过程;记录不同条件下锂离子电池初爆响应时间、燃爆峰值温度及峰值温度持续时间,考察不同包装、数量及SOC对锂离子电池空运安全的影响。结果表明:锂离子电池燃烧可分为初爆和燃爆2个阶段,一节电池热失控可形成连锁燃烧反应;电池热稳定性随SOC增大而显著降低;空运电池数量严重影响空运安全;用瓦楞纸包装时,燃爆峰值温度高达820℃,不能提高锂离子电池安全性。  相似文献   

10.
为探究在航空运输低压环境下Novec1230(全氟己酮)和2-BTP(2-溴-3,3,3三氟丙烯)2种新型清洁气体灭火剂扑灭和抑制空运锂离子电池火的效果,基于动压变温实验舱,自主设计了适用于气体灭火剂的实验灭火装置;在40,60,80 kPa 3种环境压力梯度下开展灭火实验,分析了施加2种灭火剂前后锂电池表面温度变化和灭火过程中的实验现象。结果表明:低压下2-BTP和Novec1230均能有效降低锂离子电池火焰中自由基浓度,快速扑灭明火;2-BTP的降温和抑制温升效果明显优于Novec1230,能更好地抑制锂电池之间的连锁热失控。研究结果可为新一代机载灭火剂的选择提供参考。  相似文献   

11.
针对航空锂离子电池热失控释放气体安全性研究不足的问题,采用气体拉曼光谱技术、气相色谱仪(Gas Chromatography,GC)和质谱(Mass Spectroscopy,MS)耦合来探究压力和荷电状态(State of Charge,SOC)对锂离子电池早期故障气体类型、气体动态演变及气体潜在危险性等特征的影响规律,同时综合考虑压力、电压和电池温度等多种因素分析锂离子电池热失控危害。研究结果表明:电池SOC越高且环境压力越低,电池越早触发热失控,爆炸极限越宽,其中30 kPa下100%SOC电池热解气体爆炸极限为8.01%~53.35%;SOC和环境压力越高,电池热失控越危险,释放的气体体积越多;CO,CO2,PF3,C2H4及电解液(C3H6O2、C3H6O3、C4H8O2)等气体可作为航空锂离子电池早期故障诊断特征。研究结果对保障锂离子电池在航空领域的安全运输及应用具有重要意义。  相似文献   

12.
分析通风和电池组数量对电池组热失控发展蔓延热传递机制的影响。选择荷电状态(SOC)为100%的镍钴锰(NCM523)三元锂离子动力电池组作为研究对象,改变电池组底部外加热源的热流量和加热时间,利用多物理场仿真软件COMSOL,进行热滥用导致不同风速通风环境和不同电池数量电池组热失控过程的模拟。结果表明:随着风速不断增大,电池组和周围环境的对流换热损失增强,电池组热失控蔓延进程受到了有效抑制。受热传导模式的影响,电池组数量和排列方式不同,电池组热失控蔓延的路线不同。越靠近外部热源的电池,触发热失控越早,触发热失控的起始温度越高;电池组所含电池数量越多,触发电池组热失控所需的热流量越大,但第一块电池热失控以后,后续电池触发热失控的时间间隔急剧缩短,电池组热失控后果的严重度增加。  相似文献   

13.
锂离子电池火灾危险性研究   总被引:1,自引:0,他引:1  
为解决锂离子电池在应用、运输中的火灾安全问题,并为锂离子电池火灾扑灭技术研究提供支撑,以钴酸锂18650型及大容量的聚合物锂离子电池为研究对象,通过开展针刺、短路、耐热等滥用试验寻求锂离子电池及电池组引发火灾的条件和因素。通过开展燃烧试验,分析锂离子电池的燃烧特点。试验结果表明:正极材料为钴酸锂的18650型锂离子电池自燃温度约为170℃,大容量的聚合物锂离子电池组在内部短路后,可能发生燃烧甚至轰燃现象且燃烧残留物温度高,易引发火灾;18650型锂离子电池在短路条件下会长时间持续放热,存在引发火灾的可能;单只锂离子电池燃烧后能够引燃相邻的电池,从而形成电池组的连锁燃烧反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号