首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 134 毫秒
1.
抑爆粉剂的参数指标是影响隔抑爆装置抑制瓦斯爆炸效果的重要因素之一。通过20 L球形爆炸特性实验装置对多种不同抑爆粉剂浓度及粒度条件下的瓦斯爆炸特性参数进行了测试。研究表明:随着抑爆剂浓度的逐渐增加,瓦斯爆炸最大压力降低,最大压力上升速率降低,压力到达峰值时间延迟;在20 L密闭环境,粉剂粒度<15 μm的条件下,当抑爆粉剂浓度增加到225 g/m3时,瓦斯混合气体被完全惰化,失去爆炸性;在15~80 μm抑爆粉剂粒度范围内,随着粒度的减小,抑爆性能先减弱后增强,在抑爆粉剂浓度为200 g/m3时,15 μm 与70~80 μm粉剂粒度最大爆炸压力分别下降了19.8%,17.8%,而40~50 μm粒度爆炸压力下降了6.4%。  相似文献   

2.
为测定ABC干粉对瓦斯爆炸的抑制作用,采用容积为20L的近球形抑爆实验系统,粒径为20.76μm,主要成分为高聚合度磷酸铵盐的ABC干粉进行瓦斯抑爆实验。实验结果表明:ABC干粉的添加能够降低瓦斯爆炸的压力;粉体浓度为0.10g/L时,抑爆效果最好;粉体的抑爆效果,不仅与粉体浓度有关,还与爆炸性混合气体中的甲烷浓度有关;点火延迟时间越长,粉体抑爆效果越差。  相似文献   

3.
为研究弯管对铝粉爆炸及二次爆炸传播和后果的影响,基于实验室粉尘爆炸及抑爆系统,测试并分析粉尘爆炸及其抑爆的关键参数。利用弯管中丙烷爆炸产生的激波引起铝粉二次扬尘爆炸,并针对铝粉二次爆炸进行抑爆测试。结果表明:激波吹起的铝粉引起的二次爆炸压力明显高于纯丙烷,铝粉质量浓度为500 g/m3时粉尘爆炸压力最高,加入抑爆剂后,粉尘爆炸的火焰传播时间及火焰强度明显减小,且磷酸二氢铵的抑爆效果优于碳酸钙,爆炸压力随着抑爆剂浓度的增加而降低,加入质量分数为10%的磷酸二氢铵能完全抑爆。  相似文献   

4.
为了研究橡胶粉尘的爆炸特性以及惰性粉体对橡胶粉尘的抑爆,用20 L球形爆炸装置测试橡胶粉尘的爆炸特性,分析粉尘浓度和粒径对橡胶粉尘爆炸压力(pmax)和爆炸指数(Kst)的影响,并且探究聚磷酸铵、磷酸二氢铵、碳酸钙和碳酸氢钠4种不同惰性粉体对橡胶粉尘的抑爆效果及不同粒径的聚磷酸铵对橡胶粉尘爆炸压力的影响。结果表明:在爆炸极限范围内,橡胶粉尘的爆炸压力随粉尘质量浓度增加先增大后减小;橡胶粉尘粒径越小,其爆炸后果越严重;聚磷酸铵对橡胶粉尘的抑爆效果相对较好;且在一定质量浓度范围内粒径越小,抑爆效果越好。  相似文献   

5.
为研究硬脂酸粉尘的爆炸特性,采用20 L球型爆炸仪对4个粒径范围的硬脂酸粉尘进行粉尘爆炸试验研究。结果表明:一定浓度范围内增大粉尘浓度能够提升硬脂酸粉尘的爆炸能量和燃烧速率。增大粉尘浓度,爆炸猛烈度先增强后减弱;减小粉尘粒径,能增强爆炸猛烈度和敏感度。粒径小于58 μm粉尘的爆炸猛烈度和敏感度最大,浓度500 g/m3时,该粉尘有最大爆炸压力1.12 MPa和最大升压速率142.00 MPa/s。  相似文献   

6.
为更好地预防煤粉爆炸事故,利用大型水平粉尘爆炸试验管道系统开展试验,探讨煤粉粒度和挥发分含量对爆炸峰值超压的影响,选取ABC粉、CaCO_3粉和SiO_2粉等3种粉尘抑爆剂,分析抑爆剂种类、浓度和粒度等因素对煤尘爆炸抑制效果的影响。结果表明,煤粉粒度以及挥发分含量对爆炸峰值超压的影响程度随着煤粉质量浓度的增加逐渐减弱。试验所用3种粉尘抑爆剂的抑爆效果由高到低依次为ABC粉,SiO_2粉和CaCO_3粉。就ABC粉抑爆剂而言,平均粒径越小抑爆效果越好,且只有当其质量浓度超过920 g/m3时,才能完全抑制爆炸波,否则穿越抑爆区后将会重新成长。  相似文献   

7.
为研究铝粉在密闭空间内爆炸特性,降低其爆炸造成的损害,利用自行设计的水平管道式可燃气体-粉尘爆炸装置,在室温下对粒度为6~8μm,9~12μm,15~17μm的铝粉在100~800 g/m3浓度范围内的爆炸特性进行试验研究。结果表明:铝粉在浓度为600 g/m3时,最大爆炸压力和最大压力上升速率最大,爆炸时间最小;铝粉浓度较低时,由于氧气充足,随着铝粉浓度增大,最大爆炸压力和最大压力上升速率增大,爆炸时间减小;当铝粉浓度超过600 g/m3,受到氧气浓度限制,最大爆炸压力和最大压力上升速率随浓度增大而减小,爆炸时间增大;相同浓度的铝粉,粒度越小,最大爆炸压力和最大压力上升速率越大,爆炸时间越小。粒度越小的铝粉,爆炸的可能性和危险性越大。  相似文献   

8.
为了解橡胶粉尘的爆炸危险性,采用20 L球爆炸测试装置对常温常压下、粒径75μm以下的橡胶粉尘在质量浓度50~700 g/m3范围内的爆炸特性进行试验研究,测定其最大爆炸压力及爆炸指数随质量浓度的变化规律,进而对其爆炸危险性程度进行分级。结果表明:橡胶粉尘质量浓度为300 g/m3时,爆炸压力达到最大值0.49MPa;在橡胶粉尘质量浓度为250 g/m3时,爆炸指数达到最大值5.04MPa·m/s,根据ISO 6184粉尘爆炸烈度等级分级标准,其粉尘爆炸危险性分级为St-1级。  相似文献   

9.
为了研究镁铝合金粉爆炸危险特性,利用20L球形爆炸容器进行测试,结果表明:180目 (80 μm)、 120目(125 μm) 和60目(250 μm)3种粒径下的金属粉尘爆炸下限浓度分别为45 g/m3,55 g/m3和95 g/m3。相同浓度下最大爆炸压力随粒径增大的而减小。以碳化硅和石墨为代表的研究中,60目,120目和180目的镁铝合金粉以10%的浓度梯度加入碳化硅浓度分别至50%,70%和80%,石墨浓度至30%,50%和60%时,镁铝合金粉不会发生爆炸。表明碳化硅及石墨等惰性粉尘都能对粉尘爆炸有抑制作用,其中石墨对镁铝合金粉的抑爆作用明显优于碳化硅。  相似文献   

10.
为了研究草酸盐粉体抑制甲烷爆炸特性,选取草酸钾、草酸钠、草酸亚铁3种较为常见的草酸盐粉体作为抑爆材料,分析了草酸盐粉体作用下的甲烷爆炸特性。结果表明,3种草酸盐粉体均具有一定的甲烷爆炸抑制作用,其抑爆作用由强到弱依次为草酸钾、草酸钠、草酸亚铁。草酸钾、草酸钠和草酸亚铁的最佳抑爆粉体质量浓度分别为0.22g/L、0.26 g/L和0.26 g/L,最大爆炸压力的降幅分别为33.25%、30.03%和20.83%。结合热重分析和甲烷爆炸抑制特性,探讨了草酸盐粉体的甲烷抑爆作用机理。  相似文献   

11.
为研究彩跑粉的爆炸强度和爆炸敏感性,采用20 L球形爆炸实验系统和热重-差热分析仪开展实验,在分析红色彩跑粉爆炸压力和爆炸极限氧浓度(LOC)的基础上,进一步揭示小苏打对红色彩跑粉爆炸极限氧浓度的影响规律。研究结果表明:在玉米粉中添加红色食用色素后形成的彩跑粉会增加爆炸风险,爆炸猛烈度属于St1级;在50~400 g/m3粉尘浓度范围内,红色彩跑粉的LOC值先减小后增大,在200 g/m3时LOC值达到最低9%;当添加不同比例小苏打对红色彩跑粉爆炸风险进行抑制时,发现LOC值随着红色彩跑粉与小苏打混合性粉尘掺混比的增大而增大,在掺混比为50%时,红色彩跑粉与小苏打混合性粉尘的LOC值为21%。研究结果可为彩跑粉加工厂的抑爆和惰化防爆技术提供基础数据参考。  相似文献   

12.
为研究超细聚苯乙烯微球粉体的燃爆特性,通过粉尘层最低着火温度测试装置、MIE-D1.2最小点火能测试装置、20 L球形爆炸测试装置,对其最低着火温度、最大爆炸压力、最小点火能量(MIE)等爆炸特性参数进行测定,探讨了加热温度、点火延滞时间、粉尘质量浓度、粉尘粒径对粉体燃爆特性的影响。结果表明:超细聚苯乙烯微球粉尘层在350℃左右时会发生无焰燃烧,且加热温度越高,粉体粒径越小,粉尘层发生着火时所需的时间越短;当粉体质量浓度为250 g/m3时,最大爆炸压力达到0.65 MPa,质量浓度为500 g/m3时,最大爆炸压力的上升速率达90 MPa/s以上;随点火延滞时间增加,最小点火能表现出先缓慢减小再急剧增大的规律;随粉尘质量浓度增加,最小点火能逐渐降低,当粉尘质量浓度超过500g/m3后逐渐趋于稳定。  相似文献   

13.
为了预防实际生产过程中发生的瓦斯爆炸事故,利用20 L球形爆炸装置,通过改变粉尘仓充压压力产生不同的扰动,研究9.5%CH4浓度下不同扰动条件对CO2抑爆特性的影响。通过对所得参数进行分析,得到CO2抑爆特性与初始扰动的关系。研究结果表明:相较于均匀静置状态,初始扰动的存在均能提高CH4的爆炸强度,当引发初始扰动的粉尘仓压力为1.5 MPa时,最大爆炸压力达到0.78 MPa;随CO2浓度增大,爆炸强度整体下降,呈二次下降趋势、最大爆炸压力时间呈上升趋势,且各初始扰动压力间爆炸强度均大于均匀静置状态、最大爆炸压力时间小于均匀静置状态;同时利用CHEMKIN软件得到绝热平衡压力,计算热损失参数发现,同一气体混合比例工况下,初始扰动状态的热损失及热损失分数明显低于均匀静置状态的,且当CO2浓度为15%时,差距最大,不同初始扰动间热损失及热损失分数最小值分别为0.013 19 kJ/m2,17.9%,远小于静置状态下0.036 29 kJ/m2,46.4%,说明初始扰动对于CO2抑爆效果存在削弱作用。  相似文献   

14.
为探索一种新型瓦斯抑爆技术,设计宽径比分别为1.5,2.5,4的矩形空腔体,并基于自行搭建的长36 m,管径为200 mm的大型瓦斯爆炸实验系统,通过在管网中铺设不同宽径比空腔体结构开展抑爆实验。此外依托支护简单的宽径比为2.5的空腔体,在腔体内填充不同质量水袋开展实验,以期进一步提高空腔体抑爆性能。结果表明:对于长径比为2.5、高径比为1的空腔体在实验宽径比范围内均能在一定程度上抑制瓦斯爆炸强度;随着腔体宽径比的增加,截面面积变化率增大,火焰及冲击波超压峰值衰减幅度越大,抑爆效果越佳;空腔耦合抑爆剂水能提高腔体的抑爆效果,在实验范围内较纯空腔可使火焰抑制率最大提高70%,超压峰值抑制率最大提高263%。  相似文献   

15.
In order to explore the influence of attapulgite powder on the methane explosion, a small-size semi-closed visual explosion experiment platform was built, and experiments were carried out. The effect of spraying powder on the whole process of methane explosion was studied when methane concentration was 7%, 8%, 9.5%, 11% and 12%, respectively. When the methane concentration was 11%, the maximum explosion overpressure dropped by modified spraying attapulgite powder was as high as 33.26%, and at the same time, the reduction rate of flame propagation velocity reached the maximum value of 36.65%. Furthermore, when the methane concentration was 9.5%, the experimental results when the powder spraying amount of modified attapulgite was 120 mg, 160 mg, 200 mg, 240 mg and 280 mg showed that when the powder spraying was 240 mg, the maximum explosive overpressure decreased by 33.14%, and the reduction rate of the peak flame propagation velocity reached the maximum value of 33.73%. Through the video images recorded by the high-speed camera, the flame structure, shape, color, etc. Were analyzed. The characterization analysis illustrated that the modified attapulgite powder has a small particle size, relatively large porosity and specific surface area. Also, it has a high weight loss rate. Combined with the results of characterization analysis, the explosion suppression mechanism of modified attapulgite powder was discussed. It was found that the modified attapulgite powder could effectively absorb the active free radicals generated in the explosion, and the modified new chemical components have a better thermal decomposition and endothermic effect and a better suppression of methane explosions.  相似文献   

16.
Selecting a suitable flame-retardant powder is essential for preventing or reducing the risk of aluminium dust cloud explosions. Two types of retardant materials were studied, namely ABC powder (a flame-retardant powder mainly composed of ammonium dihydrogen phosphate dry powder) and melamine pyrophosphate powder (MPP). A specially designed rectangular pipe was used to examine the influences and mass fractions of the aforementioned flame retardants and the effects of compounds on maximum explosion pressure and maximum explosion pressure rate of increase. The results showed that the explosion-suppression effects of MPP powder were superior to those of ABC powder. Furthermore, the suppression effects of combining ABC and MPP to form compounds in various ratios were explored. The explosion-suppression effects of the single flame-retardant powders and flame-retardant powder compound were compared, which revealed that the effects of the flame-retardant compound were intermediate to those of ABC and MPP used separately. No synergistic effect was observed in the compound retardant. However, component mass fractions influenced the retardant properties of the compound. The suppression mechanism was investigated through thermal analysis, which revealed that the decomposition of the two flame-retardant powders was an endothermic process that generated inert gas. The addition of flame-retardant powder delayed the time required by aluminium to break through its oxide film. However, the thermal analysis curve of the compound overlapped those of the two single powders, and no new chemical reaction occurred. Thus, no change was observed in the efficacy of the flame-retardant properties.  相似文献   

17.
为探究混合金属粉尘爆炸危险性及与单一粉体爆炸特性差异,确保车间安全生产,采用粉尘云点火能量测试系统对车间混合金属粉尘及铝粉最小点火能量在不同影响因素下的变化规律及2种粉尘火焰变化特征进行测试。研究结果表明:混合金属粉尘和铝粉最小点火能量在一定范围内(38~96 μm)与粒径呈正相关性,当混合金属粉尘粒径大于75 μm时,所需最小点火能量大于1 000 mJ,其爆炸敏感性迅速降低,此时铝粉仍有较强爆炸敏感性;2种粉尘最小点火能量随质量浓度增加呈先降低后升高的趋势,最小点火能分别为295,15 mJ,对应的敏感质量浓度为600,1 000 g/m3,混合金属粉尘在质量浓度为500~700 g/m3时具有较大爆炸危险性;同铝粉相比,混合金属粉尘点火能量更高、火焰燃烧时间更短、火焰高度更低、爆炸剧烈程度更弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号