首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过建立现代建筑夹层模型,研究铺设大量电缆可能引发的火灾效应,探索夹层内电缆火灾特性,找到电缆在夹层内的合理铺设方式,为制定科学合理的防火对策提供依据.本文主要讨论了不同因素对火焰蔓延速度、烟气温度和有害物质生成浓度的影响,并评价了有害物质的毒害作用.结果表明,夹层内铺设电缆的数量、铺设角度和距离夹层底层远近对电缆的燃烧特性有明显影响.1根电缆时火焰蔓延速度为3.17×10-3 m/s,两根时为3.96×10-3 m/s;1根电缆情况下,铺设角度由45°到垂直状态时,蔓延速度由4.01×10-3 m/s增加到26.09×10-3 m/s,产生烟气温度和烟气中有害成分浓度也随之增高;垂直条件下,烟气质量浓度在230 s时达到最高值12.50 g/m3,产物CO的质量浓度远远超出OSHA标准(1.88 g/m3).因此,电缆在夹层内垂直燃烧时发生火灾的危险性更大.  相似文献   

2.
我国城市架空高压电力线路已逐渐下地进入电缆隧道,其中的火灾防控系统是保护整个电力输送安全与稳定的重要一环。搭建了高压电力电缆隧道火灾烟气模拟与测量实验平台,针对电缆受热着火燃烧的典型工况,研究了隧道两端不同开口状态下的顶棚各位置CO浓度、CO2浓度、烟颗粒浓度和温度的变化特征。结果表明,顶棚位置CO浓度和烟颗粒浓度可作为火灾早期预警的优选标志性参数,而CO2浓度和温度较不适合。设定CO浓度和烟颗粒浓度的预警阈值分别为10 ppm和0.05 dB/m,各顶棚位置均可实现报警,各工况下,不同顶棚位置报警时间呈以火源正上方探头为最早报警的V字形分布。此外,电缆隧道两端的开口状态对隧道内CO和烟颗粒运动产生一定影响,进而影响不同预警参数的响应灵敏度,即两端开口时,CO浓度预警模式更早响应,而两端关闭时,烟颗粒浓度预警模式更早响应。研究结果对高压电缆隧道火灾预警系统的设计具有指导作用,也可为未来高压电缆隧道的相关预警标准提供基础。  相似文献   

3.
使用模拟的地下油料储存库装置,对地下油料储存库火灾初期模式进行了实验研究.结合油料地下储存库火灾防治和安全性要求对实验结果进行了分析.结果表明,模拟油料地下储存库起火后,火灾初期模式与实验初始条件、边界条件和装置结构直接相关.在一定条件下,模拟油料地下储存库内出现爆燃向爆轰的转变;不同的环境条件下,火灾的模式不同;油料地下储存库内火灾的发展,油料的持续燃烧及发生燃烧的部位受通气条件和洞内复杂的烟气流向等条件控制.  相似文献   

4.
为研究地铁“T”形换乘车站通道火灾时站厅不同防烟分区通风系统联动模式的烟气控制效果,采用火灾动力学软件FDS构建了换乘通道内乘客行李火灾场景,对起火通道、两侧站厅通风系统和防火门不同联动模式下的顶棚烟气温度、人眼高度及危险高度的CO浓度和能见度进行计算模拟。结果表明:关闭起火通道防火门能够将烟气控制在局部区域,但会加快通道内CO浓度上升和能见度下降的速度;各防烟分区通风系统均执行排烟动作虽然会导致烟气向两侧站厅蔓延,但危险高度的能见度始终在安全逃生的最低限值以上;烟气扩散至补风防烟分区时,新鲜空气与烟气的掺混将加快烟气沉降速度,不利于人员疏散和应急救援。  相似文献   

5.
双室火灾烟气特性的实验研究   总被引:3,自引:0,他引:3  
本文在1/2缩尺建筑模型中,取双室-走廊结构,以标准木垛为火源,对建筑火灾的初始阶段进行了实验模拟。着重研究了火灾初期的烟气特性及其变化,包括烟气温度及烟气中CO_2气体和炭颗粒浓度。本文目的在于在探索和发展中等尺寸火灾实验模拟手段和方法的同时,定性地确定火源功率对烟气特性的影响,并积累一定的实验数据,为建筑火灾的分析和模化提供实验基础和依据。  相似文献   

6.
电缆隧道火灾数值仿真及分析   总被引:1,自引:0,他引:1  
电缆隧道灭火以及人员疏散的关键,在于对灾变条件下隧道火灾参数变化的正确预测,特别是火焰、烟气蔓延范围,烟气浓度变化以及有毒气体的扩散范围等参数的预测。为了获得电缆隧道火灾参数,应用美国国家标准和技术研究院(NIST)开发的FDS(Fire Dynam ics Simulator)软件,建立电缆隧道模型,对隧道火灾进行全尺寸模拟,通过对模拟实验数据处理和分析,给出电缆隧道火灾时烟气浓度和氧气浓度,纵向温度的变化规律,火焰蔓延情况以及高温烟气在隧道中水平蔓延规律,为有效救援和紧急疏散以及消防决策提供一定依据。  相似文献   

7.
利用计算机模拟技术,对宾馆火灾烟气扩散和人员疏散过程进行了计算模拟.首先基于客房的火灾可燃物分析,设定了火灾增长功率曲线.利用大涡火灾模型,计算了火灾发生后,起火房间、疏散通道及疏散出口内的影响人员疏散的温度、有毒气体浓度以及能见度发展趋势,给出火灾条件下可用安全疏散时间.通过精细网格人员疏散模拟,分析了人员所需安全疏散时间及安全疏散行为方式,研究表明人员可以安全疏散.该方法可作为宾馆火灾安全分析参考.  相似文献   

8.
鉴于CFD在火灾模拟方面能够准确反映出火灾过程中烟气、温度、CO浓度等的分布特性,采用CFD对不同海拔条件下的隧道火灾进行模拟计算。计算结果表明,火源功率相同时,随着海拔的升高,上层烟气纵向蔓延速度以及下层新鲜空气向火源补充速度均增大。CO浓度以隧道中线为轴两侧对称分布,隧道中线上浓度最低;1.5m高度处,CO首先出现在隧道出口位置,随后向回蔓延;同一断面上层CO浓度大于下层CO浓度,海拔的升高导致CO生成量增多,高浓度区域范围变大。另外,随着海拔的升高,火源附近拱顶烟气温度增大;不同海拔条件下,拱顶烟气温度沿途均呈幂指数衰减,海拔越高,温降的速率越快。  相似文献   

9.
利用大涡模拟软件FDS对某居民楼火灾发生发展和烟气传播过程进行数值模拟,探讨烟气质量浓度在侧间-走廊建筑的分布情况。在不同房间的目标位置设置探测点,分析烟气质量浓度、CO体积分数分布。结果表明,距离火源位置最远的房间烟气质量浓度、CO体积分数最高且在短时间内达到致死浓度;烟气更容易在最远的房间聚集,在特定的时间段内,始终比其他房间的危险性要高。对于此类居民楼建筑火灾中的人员安全而言,最远端房间的危险性最高,火灾时要着重注意此区域的疏散。此外,在走廊顶棚上间隔适当的距离设置了挡烟垂壁,并且模拟了该工况下烟气质量浓度分布。结果表明,加入挡烟垂壁后走廊的烟气蔓延相对均匀,各个房间烟气质量浓度更为接近,最大烟气质量浓度也有明显降低,从而延缓了整个建筑达到危险状态的时间。  相似文献   

10.
在考虑人为恐怖袭击行为情况下,采用地铁轨道区模型实体火灾试验研究了地铁轨道区的火灾场景。得出了模拟地铁轨道区在火灾中的热释放速率,烟气浓度,温度,烟密度的变化规律。通电模拟短路以致引燃方式着火的最大热释放速率为9.66kW。浇洒煤油方式点火,轨道区最大热释放速率达到了204kW。随着电缆的点燃,燃烧进行的较为缓慢,烟气上升至隧道顶,沿着顶部向开口外扩散。C02的浓度变化较为缓慢。至10’41″达到c02释放峰值5027.7ppm;至10’41″时C0浓度达到最大354.0ppm。在轨道区问燃烧过程中,高温烟气始终沿着隧道顶部扩散,低于1.5m的空间是相对安全的;高于1.7m的空间是相对危险区域。火灾中烟气是首先弥漫整个房顶,然后再往下漫延的。  相似文献   

11.
起居室典型材料的火灾温度场实验研究   总被引:1,自引:0,他引:1  
就建筑火灾发生频率较高的起居室为研究对象,主要对该类住宅中的一些常见和使用广泛的典型家具及装修材料,纸张(报纸)、多层胶合板以及软垫分别进行了火灾燃烧实验,对火场中重要参数温度场进行了测试与分析。对由典型装修材料组成的单室,既起居室火灾进行了全尺寸火灾实验,目的是掌握起居室内火灾的发生发展、燃烧过程和火灾蔓延特点。研究表明,住宅火灾中聚合材料、人工填充泡沫等人造材料的热释放速率最大,最高可达305kW,是火灾前期起居室升温的主要热源;全尺寸火灾实验过程中火焰蔓延较快,扩展幅度较大,蔓延过程中多股火焰交叉处温度可达250%左右,容易造成火势火场传播,同时释放出大量深色烟气,火场能见度极低。全尺寸起居室实验表明,短短3min27s内火场温度达到850℃。  相似文献   

12.
中庭火灾的烟气流动与控制数值模拟是性能化消防设计的关键。借助Fluent软件,以广州某广场中庭为实例,考虑火源位置和补风口位置两因素,设计了不同的中庭类建筑火灾场景,并建立了数值模型。结果表明:当补风口稍高于火源时,不仅对火源的影响较小,还有利于烟气的排出;烟气中的CO向远距离处迁移时浓度变化较小;发生火灾时,中庭底部烟气的毒性危害高于烟气的高温危害。  相似文献   

13.
白宇涛  高飞  于唯  屠越  仪涛 《火灾科学》2023,32(1):19-25
为对比研究开放与受限条件下的电缆火灾燃烧行为,采用CFD数值模拟软件建立了全尺寸电缆燃烧模型,同时考虑了不同间距对电缆燃烧特性的影响,并将开放与受限条件下的计算结果进行对比,分析了两种条件下电缆火灾中各工况的温度、O2浓度。结果表明:开放条件下的电缆燃烧主要属于燃料控制型,而受限条件下的电缆燃烧主要属于先燃料控制型,后通风控制型。在开放条件下,氧气充足,燃烧更为充分,形成的火焰高度及温度更高,更容易引燃上方可燃物体;而在受限条件下,电缆火焰受到顶板限制形成的顶棚射流,会加强火焰对电缆的热辐射作用,有助于电缆燃烧。但由于侧壁的存在,电缆燃烧过程中的空气卷吸受到了一定的限制,由于通风不足,受限空间内的O2浓度逐渐下降,电缆燃烧受到抑制,甚至熄灭,而随着空气的补充,电缆将可能出现复燃现象。此外,两种条件下电缆间距对燃烧的影响均较为明显,当间距较小时,燃烧电缆之间的影响显著,燃烧更为剧烈,而随着电缆间距增大,燃烧电缆间的相互热辐射减弱,更接近于单根电缆的独立燃烧,其中开放条件下相对更为明显。  相似文献   

14.
目前国内核电厂普遍采用确定论方法进行防火安全评估。采用CFD模型对核电厂某典型电气间火灾发生过程进行数值模拟研究。模拟火灾行为(火势增长和蔓延)、温度场变化、烟气浓度变化等,分析结果中温度对电缆和电气设备的失效判定、烟气层对电缆和电气设备的风险影响,研究该方法对于核电厂防火安全分析的指导作用。通过分析数值模拟数据,计算结果与二代机型确定论分析方法结果相符,有效验证了CFD火灾模型在核电厂防火安全评估中的适用性,为国内自主建立核电厂火灾数值模拟评价体系提供参考。  相似文献   

15.
为准确分析真实火灾条件下的船舶机舱结构力学行为,克服传统标准温升法的缺陷,提出基于火灾动力学模拟器(FDS)和ANSYS的火-热-结构力学耦合分析方法;采用FDS仿真模拟真实火灾场景,获得近机舱内壁面处时变温度场信息,以此温度场信息为边界条件,传输到结构力学行为仿真软件ANSYS中,对机舱结构加载温度荷载并进行瞬态热分...  相似文献   

16.
为研究大型储油罐区池火灾温度、热辐射强度、流速、组分等燃烧特性参数在油罐外不同区域的变化规律,以10万m3原油储罐区为研究对象,构建罐区池火灾燃烧数学模型,运用计算流体动力学(Computational Fluid Dynamics,CFD)技术进行数值模拟研究。结果表明:整个火场温度大致呈锥形分布,火焰温度最高可达1 500 K,纵向来看,底部温度较高,上部温度逐渐降低,径向来看,中心温度较高,周围温度逐渐降低;随着距罐壁以及距罐顶距离的不断增加,热辐射强度均呈现逐渐降低的趋势,最高热辐射强度为132 kW/m2;罐顶上方区域存在火焰卷吸现象,中心位置流速最大,最高可达56 m/s,罐底区域存在火焰贴壁现象;得到燃烧产物(CO和CO2)的体积分数分布,以CO体积分数为0.001作为判断依据,推断出火焰高度为120 m。研究结果可为今后此类火灾事故的防治提供理论支撑。  相似文献   

17.
王允  孙一鸣  雷蕾 《安全》2020,(2):36-41
针对三种不同尺寸的电气管廊试验环境,开展实体火试验,研究引火源、电缆类型及通风风速等因素对电气管廊火灾温度特性的影响,研究表明,电缆类型及引火源对火灾发展影响较大,通风风速对火灾温度特性产生规律性影响,不同尺寸的电气管廊内温度变化不存在比例关系。细水雾灭火系统可以有效扑灭电缆发热起火及外部火引燃的火灾,数值模拟结果可以较好的预测实体火试验结果。  相似文献   

18.
为了研究不同火源条件下变压器火灾动力学过程,利用全尺寸变压器火灾试验,验证了隐蔽、立体、多尺度的变压器火灾数值模拟的有效性,模拟5,10,15,18 MW火源功率下变压器室内火灾烟气蔓延、温度分布变化。研究结果表明:火源功率对烟气蔓延速度和温度分布影响较大,当火源功率在18 MW以内时,变压器油燃烧时间在30 s内,产生的热均不会使变压器室内壁面和顶棚处的烟气温度超过300 ℃,没有达到混凝土的耐火极限。  相似文献   

19.
为了研究露头煤层自燃发火过程以及判定火灾发展状态与趋势,自主设计了露头煤层自燃过程相似模拟系统实验装置。通过分析相似模拟实验数据,得到火区气体CO_2,CO,O_2体积分数与温度之间的变化关系具有良好的相关性,可作为判定火灾状态的标志性气体,并拟合出O_2体积分数与温度之间的关系方程。根据氧消耗原理及相关理论,得到了煤在干燥环境中阴燃状态下的热释放速率简化关系方程,为煤田火灾的研究和防治提供了参考依据。  相似文献   

20.
采用火灾动力学模拟器软件和性能化防火设计理论,基于实际事故案例分析,设计针对某850 kW水平轴风力发电机机舱的典型火灾场景,建立池火灾模型,对额定风速(13 m/s)下机舱内该类型火灾的发生和发展过程进行研究,模拟计算机舱内火灾的热释放速率、温度场和速度场等参数,探讨进气口风速对火灾热释放速率和温度场等的影响。结果表明:封闭条件下,从齿轮箱底部发展起来的油池火灾热释放速率在62.4 s时达到最大值(757 kW),持续燃烧93 s后降至0;齿轮箱附近部件遭受火灾破坏最为严重,喷射油料二次燃烧导致火强度变大并加剧了火灾的破坏程度。额定风速下,齿轮箱附近软管喷射油料未出现二次燃烧现象,但火灾后期热释放速率在335 s内达到4 000 kW;以火源为分界面,火源前方区域温度(406~567℃)明显高于后方区域温度(177~279℃);顶部通风口承受全部热流,机舱罩顶部温度最终达到930℃,并出现轰燃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号