首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
为精准判定采空区等地下隐蔽火区高温点的位置和范围,综述现有采空区煤自燃温度探测技术,重点总结和分析红外探测法、分布式光纤测温法、指标气体探测法、热电偶测温技术以及同位素测氡法等煤层测温手段的研究进展与技术瓶颈,着重研究声学法测温的技术原理及实现方式;结合分层建模和插值建模的优点,探讨声学测温技术在采空区松散煤体煤温反演探测应用中的可行性。结果表明:受限于煤层赋存及开采方式等煤矿现场的实际情况,准确反演和精确定位采空区等隐蔽火源高温点和位置的探测方法和装备技术有待进一步发展;声学法探测松散煤体自燃温度的基本原理、传播衰减规律、温度场重构模型及其关键特征参量需进一步准确获取;综合考量声学测温技术原理和实现过程,该技术适用于采空区松散煤体自燃火区的环境特征,有望成为采空区隐蔽火源位置精准探测发展前景良好的探测方法。  相似文献   

2.
老空区水害是影响我国矿山安全生产的重大灾害之一,通过应用综合物探技术查清老空区的开采规模、开采位置、空间形态及冒落、积水等情况,结合钻探揭露的空区和矿体赋存情况进行对比验证,表明高密度电阻率法和瞬变电磁法对采空区的探测具有较好的探测效果,能有效地对采空区的含水性进行探测与评价,防止重大突水事故的发生,为后期进行的开拓工程提供可靠的依据。  相似文献   

3.
为解决煤层露头自燃所引起的资源浪费和环境污染,以新疆台勒维丘克煤层露头为研究对象,采用数值模拟方法研究煤层露头在火风压、火风压及外部风压作用下的自燃演化规律,为治理火区和保护环境提供依据。研究表明:火风压作用下,风流最大流动速度0.729 m/s,火风压最大达到170.2 Pa;火风压与外部风压联合作用下,煤层露头动力系统是负压通风系统,在漏风速度为0.2 m/s时,研究5个典型位置的温度、氧浓度、速度及压力的变化规律;并分析孔隙率、漏风速度对煤层露头自燃火灾的影响,说明大孔隙和漏风供氧为火灾大规模发展提供有利条件。研究成果对治理火区及保护生态环境奠定坚实基础。  相似文献   

4.
煤层自燃火区温度检测技术的研究与应用   总被引:5,自引:0,他引:5  
在煤矿自燃火区的治理过程中 ,同位素测氡法探测煤层自燃火源精确位置是火区治理的关键技术 ,而火区温度信息的采集为灭火方案及灭火参数提供可靠依据。笔者介绍了综合利用火源位置精确探测技术与火区温度探测技术的方法 ,为煤矿火区的预测预报提供了可靠的手段 ,节省大量的防灭火资金 ,提高防灭火工作效率。  相似文献   

5.
应用同位素测氡法探测技术对老二井火区进行了精确探测,并结合数值插值技术对野外测氡数据进行相应处理,得成了火区氡测值等值线和火区高温火源位置分布等值线,进而区分了该火区东西测场内的温度异常区和燃烧区。分析结果表明,西区温度异常区总面积约255477m2,东区温度异常总面积约70370m2,为该矿区灭火方案的设计提供了科学依据,也可为国内同类问题的解决提供参考。  相似文献   

6.
综合物探技术在矿井工作面底板含水构造探测中的应用   总被引:1,自引:0,他引:1  
为了查明汾源煤业文明矿5-101首采工作面底板岩层赋水情况和煤层地质异常体情况,并对其进行突水危险性区域划分及评价,采用瞬变电磁法、直流电法和无线电波透视法三种物探方法综合勘探,综合分析三种物探方法探查结果,并结合揭露情况和钻孔验证。结果表明:位于切眼往外(0~250)m范围内,工作面底板相对破碎、裂隙岩溶发育或富水性强,导高大,且煤层内部较不均匀,存在多条5m以上落差含水断裂破碎带,此区域突水危险性最大;切眼往外(300~380)m范围内存在局部富水区域,导高较小,但不存在构造破碎带,突水可能性较小;工作面其他区域都较安全。综合物探比单一物探更具有准确性和可靠性,更符合工程实际情况,为采取针对性的治理措施从而实现安全回采提供了参考依据。  相似文献   

7.
为确定露天矿边坡内残煤发生自燃时内部温度分布及燃空区深度,以PFC3D作为模拟平台,借助其热力耦合模型,模拟了氧在裂隙中运动并与煤层反应且相互促进发展的过程,从而得到了边坡内温度场及燃空区发展深度;使用极小颗粒模拟氧气的流动及其与煤的反应,并通过FISH实现该过程。使用该模型模拟的结果表明,氧流通道的形成与煤层自燃是相互促进的,但燃空区的发展应该有一个最大深度。燃空区发展过中边坡内温场分布区域的变化可划分为3个阶段,分别是燃空区深度为60~70 m、70~120 m、120~170 m。海州露天矿边坡的残煤自燃的燃空区深度为165 m,与物探确定的150~200 m的距离相吻合。研究能估计燃空区的深度,从而为判断有残煤自燃情况下的边坡稳定性提供依据。  相似文献   

8.
为确定新老采空区共存时本工作面的最优升压区间,提高升压效率,根据双层采空区气体涌出及自燃数值模拟结果,采用多指标区间数关联决策模型对合理升压区间进行评价和优化,以本工作面瓦斯、CO浓度与涌出量和上下覆之间等压面与进风口距离、上覆老采空区氧化带宽度和最高温度7个变量为评价指标,开展7种指标区间数关联决策研究。结果显示,现有风压基础上升压70~80 Pa即本工作面回风口风压高于上覆20~30 Pa为综合最优升压区间。现场升压结果显示,本工作面回风口风压高于上覆老空区20~30 Pa时,瓦斯、CO浓度基本未超限且上覆老采空区未发生自燃。  相似文献   

9.
为确定新老采空区共存时本工作面的最优升压区间,提高升压效率,根据双层采空区气体涌出及自燃数值模拟结果,采用多指标区间数关联决策模型对合理升压区间进行评价和优化,以本工作面瓦斯、CO浓度与涌出量和上下覆之间等压面与进风口距离、上覆老采空区氧化带宽度和最高温度7个变量为评价指标,开展7种指标区间数关联决策研究。结果显示,现有风压基础上升压70~80 Pa即本工作面回风口风压高于上覆20~30 Pa为综合最优升压区间。现场升压结果显示,本工作面回风口风压高于上覆老空区20~30 Pa时,瓦斯、CO浓度基本未超限且上覆老采空区未发生自燃。  相似文献   

10.
铁矿区采空区勘测及其危害评价研究   总被引:5,自引:8,他引:5  
本文采用野外勘测、理论分析和定量计算相结合的技术路线,研究了采空区分布及参数的高密度电法勘测方法、采空区对地表的影响程度和地表移动区的范围的定性定量评价方法,研究结果可以作为政府进行矿区安全生产综合整治和安全规划的科学决策依据.  相似文献   

11.
应用能位测定法和示踪检测技术联合检测了鸡西老二井火区地下漏风状态。通过测试计算相对总压值得出了火区范围内井巷系统与采空区的风流关系,进而定性确定了火区内老二井与胜利井之间存在的可能漏风路径。在此基础上,利用瞬时释放示踪气体法确定了胜利井和老二井间的漏风方向和漏风速度,计算得出了火区下采空区内平均直线漏风风速为0.13m/s,漏风量为776m3/min。研究结果为矿区采取针对性的防灭火措施提供依据,并为同类问题的解决提供参考。  相似文献   

12.
针对广西大厂铜坑矿细脉带火区地表塌陷坑废气排放带来的大气污染及对当地自然生态环境的破坏问题,采用地表硐室爆破抛掷覆盖塌陷坑与地表废气碱吸收方法进行综合治理.通过实施11次地表硐室爆破工程,覆盖总岩土方量为31.85×104 m3,同时采用喷浆胶结进一步密实措施形成细脉带事故隐患区的大面积覆盖,有效窒息火区的燃烧.不具备爆破覆盖的塌陷坑则采用氢氧化钙湿式洗涤法进行治理.通过对井口喷洒雾状石灰水,使其与冒出地面的SO2发生吸收和氧化反应,再渗入塌陷坑内吸收废气,抑制矿石的燃烧.  相似文献   

13.
为研究开区注氮条件下,采空区遗煤自燃被抑制和熄灭作用复杂力学过程(原理),由非均质多孔介质中的渗流连续性方程、气体弥散方程和综合传热方程的联立,建立了注氮采空区煤自燃的非定常数值模型。结合实例,用迎风格式有限元方法求解。计算在不同情况下采空区自燃高温点熄灭过程,以图形方式给出了采空区的漏风流态、氮气流态,描绘灭火降温过程中,采空区氧、CO和温度分布的动态变化过程。提出了对自燃早期火灾施行开区注氮灭火的方法和适用的判定准则。理论计算得到开区注氮灭火分为两个阶段过程,即原火源熄灭和新自燃氧化区形成并自燃。指出实施开区注氮灭火应准确把握注氮时机和防止新自燃氧化区形成的工作面开采推进时机;并配合降低漏风措施条件下进行注氮。  相似文献   

14.
为解决浅埋自燃煤层采空区因地表及工作面漏风而自燃的难题,以沙坪煤矿1818工作面为例,利用SF6示踪法检测采空区地表漏风通道和风速,利用FLUENT数值模拟分析不同漏风源采空区自燃“三带”分布的特征,并通过现场束管测试结果对比分析浅埋煤层采空区地表漏风对自燃“三带”分布的影响,同时限定工作面最小推进速度,确保工作面的安全生产。研究结果表明:地表漏风风速为0.06~0.30 m/s,漏风通道多且复杂;相比于工作面单一漏风源,有地表漏风存在时,自燃危险性加大;限定工作面最小推进速度为1.24 m/d。因此,多漏风源煤层开采条件下自燃“三带”分布的确定对浅埋藏自燃煤层采空区遗煤自燃预测预报及预防工作具有重要的指导和借鉴意义。  相似文献   

15.
为揭示浅埋深近距离煤层群开采过程中地表裂隙发育对上覆采空区遗煤自燃的影响规律及影响范围,以苏家沟煤矿为研究背景,建立采空区流场流动及低温氧化的数学模型和三维几何模型。采用FLUENT模拟软件模拟了下煤层工作面推进过程中上覆采空区的氧气分布情况,得到了浅埋近距离煤层上覆采空区基于裂隙动态发育的氧气场和风流场的分布规律。依据采空区自燃危险区域判定理论,对上部煤层采空区内的自然发火危险区域进行预测。结果表明:连通地表与采空区的裂隙数量随工作面的推进而增加,上覆采空区氧化升温区域主要集中在滞后工作面0~20 m范围内,采空区深部的氧化带分布在新、老裂隙附近,在进风侧靠近地表且在回风侧靠近裂隙底端;当工作面推进120 m,即产生3条贯通型裂缝时,采空区自燃危险性最大,结合风流场云图确定上煤层底板自燃危险区距工作面水平距离为97.5 m,是煤矿开采过程中的重点防护区域。  相似文献   

16.
为了研究矿井发生火灾后高温烟流的蔓延规律及影响因素,利用COMSOL软件对火区进行数值模拟,建立巷道三维模型,得到火区风流速度与温度分布。通过改变边界条件,分析火风压作用下,火区烟气在不同控制风速、巷道条件作用下蔓延规律,得出不同因素与临界风速的关系,为选取合理的火灾控制风速提供理论依据。研究结果表明:火源温度一定时,巷道入口风速越低,火源下风侧高温烟流越靠近巷道顶部,随着风速增大,向巷道下部蔓延;风速较低时,在火区火风压的作用下,会产生烟流逆退现象,随着风速的增大,逆流层长度和厚度随之减小;巷道入口通风条件不变时,火区温度越高越容易产生烟流的逆退,影响范围越大;巷道高度越高、上行风坡度越小,越易发生逆退现象;不同影响因素与巷道平均温度不成正比关系,其中下行风坡度5~15°时巷道平均温度较高且易于发生烟流滚退现象,影响范围较大;火源温度、巷道条件与临界风速的数据拟合结果对预测巷道的临界风速有较好的参考价值。  相似文献   

17.
2005年11月6日,河北省邢台县尚汪庄石膏矿区发生井下采空区大面积冒落,引起地表坍塌,形成一长轴约300m、短轴约210m、面积约5.3万m2的塌陷区,以及24.5万m2的地表坍塌移动区。造成尚汪庄石膏矿区康立石膏矿、太行石膏矿、林旺石膏矿井下48名作业人员被困,地面88间房屋倒塌,29名矿山职工和家属被困,矿山工业设施严重受损。  相似文献   

18.
为了能够对煤矿采空区遗煤自燃危险性进行准确判定,提出基于IIAHP-Entropy-ssd最优综合赋权模糊评价模型。首先,结合影响采空区遗煤的自燃性及环境影响因素,建立危险性评价指标体系,并确定各评价指标的分级准则;其次,利用区间数代替数值评价打分,并运用可能度互补矩阵进行修正的改进区间数层次分析法(IIAHP),结合熵权法(Entropy),根据现场实测数据,得出各评价指标的主、客观权重,并运用离差平方和(ssd)的最大化思想进行最优综合赋权,克服评价过程中主、客观因素对评价结果的影响,运用属性数学理论,建立各评价指标的隶属函数;最后,运用该模型对忻州窑矿8914综放工作面采空区遗煤自燃危险性进行评价,并与现场实际情况进行对比,结果表明:该模型的评价结果与实际情况基本一致,验证了该评价模型的准确性,为采空区遗煤自燃危险性评价提供参考和借鉴思路。  相似文献   

19.
为了研究动态推进过程中工作面推进距离对采空区煤自燃分布特征的影响,采取及时有效的煤自燃防治措施,以13210综放面为工程背景,基于采空区渗透率分布公式和传热传质控制方程,建立采空区煤自燃数值解算模型。利用COMSOL软件模拟了工作面不同推进距离下以流速和氧体积分数为划分指标的采空区氧化带范围和高温区域的变化规律,分析了高温区域与氧化带的叠加效应。通过现场实测与模拟结果比对,验证了模拟的准确性。研究结果表明:采空区渗透率随着工作面推进距离的增加而不断变化,近工作面端渗透率变化不大,而中深部采空区的渗透率不断减小;采空区氧化带分布随工作面推进距离的增加呈现阶段性变化特征,推进初期氧化带范围不断变化,推进后期氧化带范围趋于稳定;采空区氧化带分布与高温区域重叠深度随工作面推进不断增加,最终稳定于工作面后方60~70 m范围内。  相似文献   

20.
为了探测资源整合矿井采空区的分布情况,采用无线电波透视技术探测了山西乡宁焦煤集团通合煤矿2101工作面中存在的小窑和老窑开采形成的采空区。在对比无线电波透视技术中常用的定点法与同步法后,选用定点法,探测频率选用88 k Hz,该频率穿透距离相对较大且具有较高精度。在研究无线电波透视探测原理和数据分析数学模型的基础上,应用SIRT算法对探测结果进行了反演,圈定了2101工作面8处较为集中的异常区。一号异常区为煤层夹矸或破碎区,二号和三号异常区为小断层或煤层采空导致的破碎带,四号、五号、六号和八号异常区是煤层采空导致的破碎带,七号异常区为小窑采空破坏区。根据各处异常区相对周围区域的能量衰减程度,YC1~YC3三处异常区地质解释的可靠性一般,YC6、YC8两处异常区地质解释的可靠性中等,YC4、YC5、YC7三处异常区地质解释的可靠性较高。对2101工作面运输、回风巷揭露采空情况进行了统计,运输巷和回风巷掘进揭露的采空区情况验证了无线电波透视结果,表明应用无线电波透视技术探测资源整合矿井采空区是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号