首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用热重分析方法对化学纯FeS的氧化自燃性及其动力学规律进行了研究,分析了粒径178μm的FeS在室温~1 000℃温度范围内的热重曲线,考察了升温速率对热重曲线的影响,并采用FWO方法计算了FeS氧化自燃的活化能。结果表明,FeS与氧气发生化学反应时迅速失重,升温速率对TG曲线有明显影响,升温速率越大,TG曲线向高温方向移动,氧化速度减小;FeS氧化过程符合n=0.381 7的随机成核和随后生长动力学反应机理,动力学模型函数的积分形式g(α)=ln[-ln(1-α)]-0.381 7,粒径178μm的FeS氧化时的活化能约为133.45 kJ/mol,动力学指前因子A=1×106.065 9s-1。  相似文献   

2.
含硫油品储罐腐蚀产物FeS的氧化自燃是引起储罐火灾爆炸事故的主要原因。用同步热分析仪(STA)在30~900℃范围内对FeS进行热重热流分析,从物理吸附和化学反应的角度分析了不同粒径和不同升温速率FeS的自然氧化倾向性,计算了不同升温速率FeS的活化能。结果表明,FeS样品粒径越小,越容易发生氧化自燃反应;升温速率越大,FeS越不容易氧化。同时,不同升温速率条件下的FeS反应机制各不相同。从实验得出的动力学参数看出,FeS的氧化反应较复杂,而非简单的放热反应。  相似文献   

3.
采用Q600型同步热分析仪对178μm的FeS样品在2、5、8、10和15℃/min 5种不同升温速率下进行了热分析实验。通过对热重数据的计算,分析了FeS在不同动力学机制模型函数中的相关系数。结果表明,FeS的自燃氧化过程符合边界控制反应的收缩圆柱体模型;确定了不同升温速率下FeS样品的活化能和指前因子。研究表明,升温速率对FeS活化能的影响比较明显,随着升温速率的提高,FeS的活化能减小,则含硫油品的自燃倾向性增大。  相似文献   

4.
基于热分析实验,研究了FeS从室温到1 000℃之间的氧化分解基本规律,实验结果表明,FeS对温度变化不敏感,一般在250℃以上才开始受热氧化,而且氧化过程比较缓慢。通过对热重数据的计算,分析了FeS在不同动力学机制模型函数中的相关系数,结果表明,市场购买的FeS样品其自燃氧化过程符合Valensi模型。确定了在873~1 143 K范围FeS的活化能E=260.228 3 kJ/mol,指前因子A=1.06×10-6K/s。  相似文献   

5.
FeS的氧化放热是引起石油储罐火灾与爆炸事故的主要原因.采用同步热分析仪对FeS的氧化倾向性及其热动力学规律进行研究,主要分析粒径为0.062~0.074mm的FeS在常温至900℃范围内的DSC/TG试验曲线,运用FWO、Kissinger、Friedman等多种等转化率法计算FeS的活化能和指前因子.其中FWO和Kissinger法的计算结果较为接近,可靠度较高.结合Malek法提出的y(α)-α标准曲线,推断出最概然机理函数为f(α)=(1-α)2.这说明FeS的氧化自燃反应符合二级普通化学反应机理.  相似文献   

6.
在硫铁矿石自燃及热分析动力学基础上,结合永鑫黄铁矿3种矿样,运用热重分析手段对矿石从常温到燃点之间的氧化过程进行研究,用不同动力学模型对热重数据进行相关性分析.结果表明,硫铁矿石氧化热解过程符合一级反应动力学机制.运用热分析动力学方法求出矿样在不同升温速率下的活化能,发现随着升温速率的增加,矿样的活化能逐渐增大,自燃倾向性减小;但随着含硫量的增加,矿样的活化能逐渐减小,自燃倾向性增大.  相似文献   

7.
化学阻燃剂通过化学作用破坏或降低煤分子中活化能较低易被氧化的活性基团,使煤自燃链式反应中断难以达到自燃。为研究煤氧化阻化过程中的热特性变化,通过煤的热重实验,从微观角度研究了次磷酸盐在煤自燃氧化过程中对其表面官能团的影响,分析了阻化剂添加前后的热特性曲线和特征温度,研究了不同升温速率及不同粒径下阻化煤样的热特性变化规律。结果显示:随升温速率的增大和煤样粒径的减小,热特性曲线及特征温度均出现向后推移,特征温度出现不同程度的升高。  相似文献   

8.
为了掌握自燃性低的FeS的氧化自燃过程,为预防FeS自燃事故的发生提供理论基础,对不同纯度化学试剂FeS,利用定温、程序升温试验方法,结合XRD、TG-DTA、TG-DSC及化学分析的结果,研究其氧化反应历程.结果表明,不同纯度FeS氧化时,试样都经历了先失重后增重再失重的变化过程.首先失重的是试样中易挥发的杂质,250~300℃时试样质量开始增加,意味着FeS氧化反应的开始.在325~400℃范围内FeS氧化反应复杂,涉及化学反应多,试样质量随试验时间延长而增加,直至恒重,增重的主要物质经XRD表征和化学分析为FeSO4.试验温度达到480℃时,试样质量先增加后减小,增重的主要物质为Fe2(SO4)3,该温度下Fe2(SO4)3分解速率慢.在550~650℃内,Fe2(SO4)3热分解或FeS的完全氧化反应引起试样质量迅速减小.试验温度高于660℃时FeS发生完全氧化反应,最终产物为Fe2O3.具有不同氧化反应活性的FeS,其氧化反应历程也不同.  相似文献   

9.
为了研究煤在低温阶段的自燃活化能及气体产生规律,基于耗氧量与煤温间的计算模型,利用煤氧化动力学测试系统,分析了3种不同自燃性煤的低温氧化表征。结果表明:1)随着煤自燃倾向性增强,煤的耗氧量和耗氧速率逐渐增大,且其耗氧速率急剧增大的拐点温度逐渐升高;2)不同自燃性煤活化能变化规律存在显著差异,利用阶段耗氧量拐点计算出铜川和大同煤样温度分别为203℃、228℃时,活化能快速减小,开始进入自发氧化阶段;晋城煤样活化能经历先减小后增大的过程,其中过渡温度段91~135℃时,活化能最小;同时拟合出活化能(E)与指前因子(A)关系式满足动力补偿效应,验证了机理函数的合理性;3)依据复合气体CO_2/CO、CH_4/C_2H_6、C_2H_4/C_2H_6、C_3H_8/C_2H_6随温度的变化趋势,结合煤低温氧化特性,可预测煤样的氧化进程和煤体温度。  相似文献   

10.
硫铁矿石自燃是矿山开采中面临的重大灾害之一。矿石自燃不仅会造成巨大的资源浪费和经济损失,还将引发一系列的安全与环境问题。通过研究硫铁矿石自燃的化学热力学机理,掌握了导致硫铁矿自燃的主要原因。利用DSC曲线对硫铁矿自燃过程的氧化特性进行研究,通过对比不同粒径的热流曲线及特征温度点的变化趋势,分析硫铁矿自燃特性的变化规律。应用热分析动力学方法计算了硫铁矿的活化能,比较不同粒径下矿样的活化能大小,为判断其自燃可能性和自燃特性研究提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号