首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potentially incendiary electrical apparatus for use in the presence of explosive gas atmospheres have to be specially designed to prevent the apparatus from igniting the gas. Flameproof design is one of several options, and one requirement is then that any holes and gaps in the enclosure wall be designed to prevent a gas explosion inside the enclosure from being transmitted to an explosive gas cloud outside it. Current standards (IEC) require that flame gap surfaces have a surface roughness of <6.3 μm. Any damaged flame gap surface has to be restored to this quality. The present investigation has demonstrated that flame gap surfaces in flameproof electrical apparatuses can suffer considerable corrosive and mechanical damage without any reduction of gap performance. In some cases very significant mechanical surface damage in fact improves gap performance. Possible physical reasons for this are discussed. These findings indicate that current high costs of repairing and replacing flameproof electrical apparatus in process plants offshore and onshore can be significantly reduced without any increase of explosion risks.  相似文献   

2.
Flameproof enclosures having internal electrical components are generally used in classified hazardous areas such as underground coalmines, refineries and places where explosive gas atmosphere may be formed. Flameproof enclosure can withstand the pressure developed during an internal explosion of an explosive mixture due to electrical arc, spark or hot surface of internal electrical components. The internal electrical component of a flameproof enclosure can form ignition source and also work as an obstacle in the explosion wave propagation. The ignition source position and obstacle in a flameproof enclosure have significant effect on explosion pressure development and rate of explosion pressure rise. To study this effect three cylindrical flameproof enclosures with different diameters and heights are chosen to perform the experiment. The explosive mixture used for the experiment is stoichiometric composition of methane in air at normal atmospheric pressure and temperature.It is observed that the development of maximum explosion pressure (Pmax) and maximum rate of explosion pressure rise (dp/dt)ex in a cylindrical flameproof enclosure are influenced by the position of ignition source, presence of internal metal or non-metal obstacles (component). The severity index, KG is also calculated for the cylindrical enclosures and found that it is influenced by position of ignition source as well as blockage ratios (BR) of the obstacles in the enclosures.  相似文献   

3.
简要介绍了爆炸危险场所的分级、防爆电气设备选用的原则,并从设备外壳和表面温度两方面论述了爆炸性气体环境中的隔爆型电气设备与爆炸性粉尘环境中的粉尘防爆电气设备的异同点  相似文献   

4.
路长  王小康  刘洋  王鸿波 《火灾科学》2018,27(3):174-180
为实现主动抑制瓦斯爆炸,研制了高速抑爆响应系统。选用尺寸为150mm×150mm×1 600mm的有机玻璃管道,在CH4体积分数为9.5%的条件下进行响应系统测试实验。系统采用火焰传感器进行爆炸火焰探测,通过所设计的程序自主判定瓦斯爆炸的发生并输出控制电信号,以继电器或MOS管为电路控制开关,通过电磁阀控制抑爆剂的喷出。实验结果表明,火焰传感器探测、信号采集、爆炸判断、输出电信号的总平均耗时为22ms,抑爆剂开始释放的平均时刻为59.8ms,抑爆剂释放到管道顶端的平均时刻为79.8ms。而爆炸火焰传播到达喷头所在1.0m处平均时刻为176.2ms。实验表明该系统具有高速主动抑爆响应功能和良好的稳定性、可靠性。  相似文献   

5.
防爆电气设备隔爆外壳最大试验安全间隙及其影响因素   总被引:1,自引:0,他引:1  
在爆炸性气体环境中安装使用的电气设备应为防爆电气设备。本文扼要讲解了间隙隔爆的机制和最大试验安全间隙的概念。从实验和理论上阐述了影响隔爆外壳最大试验安全间隙的因素。提出了隔爆型电气设备设计、安装、使用应注意的方面。  相似文献   

6.
Explosion parameters for closed flameproof apparatus are changed when apertures like gap (e.g. push button) and porous structures (breathing element) are introduced on the cover or wall of the flameproof enclosures. Similarly, an interconnecting tube between two enclosures, results in significant change in explosion parameters. It is observed that the maximum explosion pressure, maximum rate of pressure rise and severity index are higher for enclosures with apertures on cover or body than that of enclosures without apertures. In case of two interconnected identical enclosures, the explosion parameters are increased in the secondary enclosure and higher than that of primary enclosure and also of isolated enclosure.  相似文献   

7.
隔爆型电机在火炸药危险场所应用的安全性分析   总被引:1,自引:1,他引:0  
针对普通隔爆型电机应用于火炸药粉尘危险场所的安全性问题进行定量分析,设计壳体粉尘侵入量试验,系统研究不同间隙下的粉尘侵入量,根据试验数据,应用曲线外推法及阿贝尔(Abel)余容状态方程计算爆压,结合材料力学及薄壁理论进行隔爆型电气设备外壳强度及刚度的校核。计算表明:若壳体内粉尘较均匀的悬浮在空中,切向应力与许用应力处于同一数量级;如果火炸药粉尘在轴承室、接线盒等局部堆积成火炸药层,切向应力比许用应力大两个数量级。试验结果强调:用于火炸药粉尘危险场所的电气设备必须有特殊的防爆结构设计,普通的隔爆电机用于火炸药粉尘危险环境时存在一定的安全隐患。  相似文献   

8.
The coupling of gas explosion flame and shock wave is analyzed. In the gas explosion process, shock wave is affected by the flame directly, and shock wave also induces the flame. Inhibiting explosion can be achieved by the interference between the flame and shock wave propagation. If the coupling effects can be damaged, the adverse effects caused by the explosion should be mitigated and controlled. According to the structure characteristics of foam ceramics, the coupling effects mechanism of ceramic foam on gas explosion flame and shock wave is researched. When the explosion goes through the structure of foam ceramics, the flame can be quenched and the shock wave be attenuated. After the flame is quenched, the supply of precursor shock wave energy is cut off. Due to lack of energy supply, the destructive effects of blast wave will be reduced effectively. Coupling effects of the flame and shock wave can be damaged by the special structure of foam ceramics. Studies suggest that a certain function to represent the structure characteristics of foam ceramics must exist. For a certain material of foam ceramics, the sure porosity δ and the pore diameter d also can be get, which is the key to research and develop foam ceramic suppression technology of gas explosion.  相似文献   

9.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

10.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

11.
Experimental studies of deflagration flame quenching by crimped ribbon flame arrestors were performed in a circular ducting with propane-air flammable mixture. The corresponding flameproof velocities were determined systemically. The results showed that the channel length, the expansion ratio and the aperture size must be taken into consideration to predict the performance of the crimped ribbon flame arrestors. To explore the relationship between flameproof velocity and arrestor structure, numerical simulations were carried out. The simulated results showed that with the reduction of the hydraulic diameter of the aperture size, the flameproof velocity is increased, which implies the basic angle must be considered when crimped ribbon flame arrestors are used to quench deflagration flame. In addition, the influence of the expansion ratio is of great significance on the efficiency of flame arrestors. The flameproof velocity can be reduced to be a value related to the expansion ratio. Two empirical formulas were derived to exhibit the relation between the flameproof velocity and the characteristics of the flame arrestor, which can be used to predict the performance of crimped ribbon arrestors.  相似文献   

12.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

13.
In this paper flame microstructures and propagation characteristic of methane explosion are studied by high speed schlieren photography technique. By experiment it shows that flame front surface and inner flow field of methane explosion has distinctly fractal characteristic, the effect of the wrinkle of flame front surface and inner reactants on flame propagation can be directly reflect by fractal dimensions. Fractal dimension has a direct relation to flame structure and flame propagation characteristics, and it is the important parameter to scale the flame propagation velocity and flame temperature.  相似文献   

14.
瓦斯爆炸阻隔爆装置失效原因的实验研究   总被引:9,自引:1,他引:8  
通过对水平管道内瓦斯爆炸的火焰结构及压力结构的实验研究 ,分析了瓦斯爆炸阻隔爆装置的失效原因。结果表明 ,瓦斯爆炸火焰是沿着管道的底部向前传播的 ,火焰长度较长 ,并具有较高的内聚力。阻隔爆装置的失效原因是由于其动作延迟时间与火焰到达装置位置所需的时间不一致 ,使释放出的抑制剂不能有效地覆盖整个火焰区 ,造成具有较高内聚力的火焰 ,在其后部巨大爆炸产物膨胀压力的推动下继续向前传播  相似文献   

15.
The Maximum Experimental Safe Gap (MESG) is an important criterion to assess the propagation of flames through small gaps. This safety-related parameter is used to classify the flammable gases and vapors in explosion groups, which are fundamental to constructional explosion protection. It is used both, for the safe design of flameproof encapsulated devices as well as for selecting flame arresters appropriate to the individual application. The MESG of a fuel is determined experimentally according to the standard ISO/IEC 80079-20-1:2017 at normal conditions (20 °C, 1.0 bar) with air as oxidizing gas. The aim of this work is to investigate the effect of inert gas addition on the MESG in order to assess the effectiveness of inertization in constructional explosion protection. The term limiting experimental safe gap (SG) is used for the result of these measurements. The fuel-air mixtures (fuels: hydrogen, ethylene, propene, methane) used as representatives for the explosion groups in flame arrester testing were chosen and diluted with inert gas (nitrogen, carbon dioxide) before testing. The dependence of the limiting experimental safe gap on the total initial pressure, amount and nature of inert additive is discussed. The initial pressure was varied up to 2.0 bar to include increased pressure conditions used in flame arrester testing. Apart from the well-known reciprocal dependence on the initial pressure, the added inert gas results in an exponential increase of SG. This effect depends on the inertizing potential of the gas and is therefore different with nitrogen and carbon dioxide. The ranking of the fuels is the same as with MESG. As a result, various mixtures of the same limiting experimental safe gap can now be chosen and tested with an individual flame arrester to prove the concept of a constant and device-related limiting safe gap. The work was funded by BG-RCI in Heidelberg (PTB grant number 37056).  相似文献   

16.
In-line detonation flame arresters are important safety apparatus to prevent group tank fires caused by the spreading of fire through vapor connection lines. In this study, a DN50 experimental apparatus aimed at the detonation flame penetration characteristics and failure mechanisms in a flame arrester was set up, and a series of experiments were carried out with 6.6% C2H4 and air mixture. Pressure, and velocity of flame penetrating through flame arrester housing and filters were analyzed. Experimental results showed that the attenuation of pressure and velocity was proportional to the thickness of the filters. Two failure modes of the fire-extinguishing process in the flame arrester were captured directly with a high-speed camera. In Mode I, the detonation flame could go straight through the flame arrester filters when the filters were too thin. In Mode II, when the filters were not sufficiently thick, the remained shock wave pressure of detonation flame was still several times of the initial pressure and could rise sharply at the downstream contraction section, resulting in that the flammable gas at the downstream transition section could be compressed and reignited even the flame had been extinguished by filters. These conclusions are helpful to reveal the nature of failure modes of fire-extinguishing process and design flame arresters with high fire-resisting performance by structure improved.  相似文献   

17.
Study of flame distribution laws and the hazard effects in a tunnel gas explosion accident is of great importance for safety issue. However, it has not yet been fully explored. The object of present work is mainly to study the effects of premixed gas concentration on the distribution law of the flame region and the hazard effects involving methane-air explosion in a tube and a tunnel based on experimental and numerical results. The experiments were conducted in a tube with one end closed and the other open. The tube was partially filled with premixed methane-air mixture with six different premixed methane concentrations. Major simulation works were performed in a full-scale tunnel with a length of 1000 m. The first 56 m of the tunnel were occupied by methane–air mixture. Results show that the flame region is always longer than the original gas region in any case. Concentration has significant effects on the flame region distribution and the explosion behaviors. In the tube, peak overpressures and maximum rates of overpressure rise (dp/dt)max for mixtures with lower and higher concentrations are great lower than that for mixtures close to stoichiometric concentration. Due to the gas diffusion effect, not the stoichiometric mixture but the mixture with a slightly higher concentration of 11% gets the highest peak overpressure and the shock wave speed along the tube. In the full-scale tunnel, for fuel lean and stoichiometric mixture, the maximum peak combustion rates is achieved before arriving at the boundary of the original methane accumulation region, while for fuel rich mixture, the maximum value appears beyond the region. It is also found that the flame region for the case of stoichiometric mixture is the shortest as 72 m since the higher explosion intensity shortens the gas diffusion time. The case for concentration of 13% can reach up to a longest value of 128 m for longer diffusion time and the abundant fuel. The “serious injury and death” zone caused by shock wave may reach up to 3–8 times of the length of the original methane occupied region, which is the widest damage region.  相似文献   

18.
To measure the explosion pressure inside an enclosure, it is common to install a piezoelectric pressure sensor in the enclosure wall. The pressure wave of the internal explosion inevitably leads to vibrations of the enclosure walls. This unwanted but naturally occurring motion is also transmitted to the pressure sensor mounted in the enclosure wall and results in inertial forces affecting the piezoelectric element. During the measurement of the explosion pressure, this affects the output signal of the pressure sensor since an undesired signal due to the acceleration of the pressure sensor is superimposed on the desired pressure signal. This behaviour of the sensor is described as acceleration sensitivity. The level of acceleration sensitivity depends on the type and construction design of the pressure sensor. Even though this sensor behaviour is basically not a new phenomenon, the evaluation of an international comparison between Ex testing laboratories in the field of flameproof enclosures has shown that the consideration of this issue is a major challenge in daily practice concerning the measurement of explosion pressures and is even often completely neglected.This work evaluates the behaviour of various piezoelectric pressure sensors with respect to the influence of acceleration and investigates the specific impact on the explosion pressure measurement in the field of flameproof enclosures. For this purpose, explosions from typically used explosive mixtures such as hydrogen, propane and ethyne in air are examined. These investigations involve simple model enclosures with various specifications as well as a commercially available equipment for hazardous areas. By using blind holes and specially designed adapters, a practical method is applied to be able to detect the effect of acceleration on the sensor signal separately from the pressure signal. For this purpose, both the discrete-time pressure curves and the frequency components are analysed using Fast Fourier Transform. The use of signal filters as a practical and fast approach to address these unwanted signal components is discussed and evaluated.This paper provides guidelines for typical end-users in the field of flameproof enclosures how to handle acceleration of piezoelectric pressure sensors and the influence on the measurement of explosion pressures correctly.  相似文献   

19.
To effectively prevent and mitigate explosion hazards and casualties, relief venting of flammable gas explosions has been applied in production processes in a broad variety of industries. This work conducted fully vented experiments to investigate the influence of venting membrane thickness, and partially vented experiments to investigate the influence of baffle blocking rate on the explosion characteristics of 9.5 vol% methane-air mixtures in linked vessels with a 0.5 m long vented duct. Results indicate that the membrane thickness and blocking rate for the two types of vented explosions significantly affected the explosion overpressure. The smaller the membrane thickness and blocking rate, the lower the explosion overpressure. Secondary explosions were observed in the vented duct through experiments and a weaker explosion flame appeared at a small blocking rate of 20%. With the further increase in the blocking rate, the flame became extremely weak, and no secondary explosions occurred. The overpressure evolution process at different positions in the explosion duct and secondary explosion phenomenon in the vented duct were investigated. This work could probably serve as an important reference for the selection of technical parameters of explosion venting in the practical industrial processes.  相似文献   

20.
In order to ensure the safe utilization of hydrogen energy, the explosion pressure behavior is extremely important to design chemical equipment and evaluate explosion accident consequence. This paper is aimed at establishing a theoretical method of predicting explosion pressure behavior in the confined chamber by considering flame instabilities. The tendency of flame wrinkling factor in the pressure-buildup stage is firstly evaluated using large eddy simulation and the compensation theory. The limiting value of flame wrinkling factor during entire explosion process is calculated using the fractal theory. Finally, the dynamic model of flame wrinkling factor is implemented into the smooth flame model. The results demonstrated that the flame wrinkling factor in the pressure-buildup stage almost increases linearly with time. The limiting value of flame wrinkling factor is 2.4649. The explosion pressure will be underestimated using the smooth flame model, and the calculated explosion pressure in the isothermal condition is smaller than that in the adiabatic condition. When the fully turbulent flame is considered, the explosion pressure will be overpredicted significantly. By changing the confined chamber size, the explosion pressure could be reproduced relatively satisfactorily when the flame wrinkling factor is assumed to increase exponentially. The explosion pressure prediction must consider the effect of adiabatic compression and flame instabilities on burning rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号