首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为分析硬质体构造对煤巷掘进工作面瓦斯压力分布的影响,运用含气-固耦合分析模块的岩石破裂过程分析有限元软件建立正常煤层掘进和含硬质体构造煤层掘进两种物理力学模型,对两种煤巷掘进工作面前方煤体应力和瓦斯压力分布规律进行数值模拟.结果表明,硬质体构造的存在增加了掘进工作面前方煤体的应力集中范围和应力梯度,进一步降低了煤层的透气性,阻碍了工作面深部煤体瓦斯向自由面的正常运移,进而形成了高瓦斯压力梯度.高瓦斯煤层掘进工作面硬质体地质构造直接影响煤巷掘进工作面地应力的分布,间接地影响瓦斯压力的分布.  相似文献   

2.
为了研究地层条件下瓦斯流动特点,通过建立瓦斯吸附-解吸、扩散和渗流综合流动数学模型,分析不同埋深条件下瓦斯流动机制,并模拟吸附层和滑脱效应对瓦斯流动的影响。结果表明:随煤层埋深增加,部分纳米孔隙内瓦斯流动机制由扩散过渡到渗流,这有利于瓦斯运移;在煤层深部,瓦斯吸附层和滑脱效应对瓦斯渗流作用影响不大;随埋深增加,瓦斯吸附层对瓦斯运移影响逐步增大,而滑脱效应则逐步弱化;在埋深相同时,两者对瓦斯运移的影响都随孔隙直径增大而减小。研究有助于深入了解瓦斯在深部煤层流动的机制,提高深部煤层瓦斯抽采效果。  相似文献   

3.
从瓦斯地质学的观点出发,将反映煤层瓦斯基本参数的空间变化规律看做是与其赋存地质条件密切相关的连续函数。结合趋势面拟合及其模型优化的原理和方法分析得出了淮北矿业集团公司芦岭煤矿井田范围内瓦斯含量的变化及分布与其位置坐标的对应数值关系,依据该数值关系可对矿井深部采场和未开采区域实施比较准确、可靠的定量瓦斯预测。该方法也适用于其他具有相似特征的瓦斯地质变量分析。  相似文献   

4.
为预测深部或浅部煤层不同温度和不同压力条件下的吸附等温线,选用型煤以高低温试验装置为依托,测试了温度为293.15,273.15,253.15 K的吸附等温线。基于T-P模型,利用等温吸附曲线对公式中的参数进行了合理的求解,探讨了一种简单的煤对瓦斯吸附等温线预测方法。研究表明:同一吸附平衡压力下,温度越低,煤的瓦斯吸附量越大;ε-ω吸附特征曲线与温度无关,呈现对数的形式;参数m和拟合度R2满足抛物线的关系,存在拟合效果最好时的参数m值。采用T-P模型预测得到的吸附等温线与实测的吸附等温线无论是趋势还是定量结果均十分吻合,其相对误差不超过5%。  相似文献   

5.
煤层瓦斯流动数值解算时空步长的选取   总被引:6,自引:0,他引:6  
对应用有限差分法解算煤层瓦斯流动时,如何选取合适的时间步长和空间步长、如何根据煤层瓦斯压力分布计算煤壁瓦斯涌出量等问题进行了分析和探讨。用煤壁处节点与煤层内相邻节点间的瓦斯压力梯度来求煤壁瓦斯涌出量的方法误差较大。根据煤层内各节点的瓦斯压力值对瓦斯压力进行拟合,用拟合曲线在煤壁处的斜率作为煤壁瓦斯压力梯度计算瓦斯涌出量,能得到可靠精确的结果。通过考察选取不同时间步长和空间步长时煤壁瓦斯压力梯度的变化,提出了选取合适的时间步长和空间步长的方法。  相似文献   

6.
为探究煤层各向异性渗流机制,分析其吸附特性,建立吸附模型并计算吸附变形量,进而量化吸附作用对渗透率的贡献情况。在此基础上分析煤层各向异性渗流特性,进一步构建应力和滑脱效应耦合作用的各向异性渗透率模型,并通过试验数据验证其适用性。结果表明:煤层瓦斯吸附过程受吸附变形和外应力的影响,且不同方向的瓦斯吸附量存在差异;在孔隙压力增大过程中,各方向瓦斯吸附量曲线先增大后趋于平缓;在有效应力、孔隙压力和滑脱效应的综合作用下,煤层各方向的渗透率均先减小后趋于平缓。考虑应力和滑脱效应耦合作用下煤层各向异性渗透率模型计算曲线与试验值吻合度较高,验证了模型的适用性。  相似文献   

7.
颜爱华 《安全》2014,35(9):4-7
利用煤岩体变形理论以及煤层瓦斯流动,建立了符合鹤煤十矿的顺层钻孔抽采气固耦合模型,并利用Comsol Multiphysics数值仿真软件模拟了瓦斯在煤体内部运移规律,通过对模拟结果和实测结果对比分析,得出该煤层顺层瓦斯抽采钻孔的合理钻孔长度为70m,为以后瓦斯抽采工作提供了重要依据。  相似文献   

8.
模糊集重心理论在隧道瓦斯突出评价中的应用   总被引:1,自引:1,他引:0  
以隧道瓦斯突出评价为研究对象。选取地质构造、煤层厚度、隧道埋深、瓦斯含量、瓦斯压力、瓦斯放散初速度和煤的坚固性系数作为指标,建立隧道瓦斯突出评价标准;用关联函数确定指标权重;结合模糊集重心理论与最短距离识别准则,构建属性识别模型,对隧道瓦斯突出进行评价。评价结果与可拓评价结果一致,从而验证了该方法的实用性。研究表明,基于模糊集重心理论的属性识别模型用于隧道瓦斯突出评价是可行的,为隧道瓦斯突出评价提供了一种新方法。  相似文献   

9.
为获得真实可靠的现场实测煤层瓦斯压力,实现煤层突出灾害等级科学评价和精准防治,通过理论分析、数值模拟和现场验证相结合的方法,以双重孔隙介质为基础,根据煤层瓦斯流动模型和瓦斯压力恢复曲线,分析煤层瓦斯压力测定的时空分布及准确性,并以桃园煤矿Ⅱ1采区10煤层为例,开展工程验证。研究结果表明:当基质瓦斯压力与裂隙瓦斯压力处于动态平衡时,所测得的煤层瓦斯压力最为准确;所构建的用于COMSOL解算的煤层测压瓦斯流动方程,可实现瓦斯压力时空分布的准确模拟;当煤层实测瓦斯压力恢复曲线与模拟分布特征一致且处于工程预测值范围内,可以判定结果为真实值;现场工程验证了实测瓦斯压力恢复曲线与模拟结果一致,测压结果准确。  相似文献   

10.
为更真实可靠地还原回采工作面及采空区内流场和瓦斯场的分布特征,基于回采工作面和采空区不同的介质属性,并考虑瓦斯扩散能力的差异,建立了各自的强耦合多物理场数学模型,并给出了瓦斯涌出所满足的质量通量边界条件。采用COMSOL Multiphysics构建了强耦合的自由和多孔介质流动以及自由和多孔介质稀物质传递等物理场,以龙煤矿业集团股份有限公司双鸭山分公司的东保卫井田二水平一采区36号煤-570左面为研究对象,研究了回采工作面及采空区稳态下的瓦斯运移特征。结果表明:采空区浅部瓦斯体积分数较小但梯度较大,且随着采空区向深部延伸,瓦斯体积分数的梯度逐渐降低,但其数值逐渐增大并趋于稳定;另外,采空区内实测的瓦斯体积分数分布与数值模拟结果具有较好的一致性,验证了建立的回采工作面及采空区瓦斯运移的数学模型和数值模型的可靠性和准确性。  相似文献   

11.
倾斜巷道中风流方向对瓦斯分布与积聚的影响   总被引:1,自引:1,他引:0  
基于计算流体动力学基本理论,利用Fluent软件,采用控制容积法对描述流体流动的控制方程进行离散,用SIMPLEC(协调一致的压力耦合方程组的半隐式方法)算法来解算流场,使用标准 k-ε 壁面函数法解决近壁面的流动,在湍流充分发展区使用标准双方程湍流模型,对倾斜巷道两帮煤壁涌出瓦斯情况下的瓦斯分布与积聚进行数值模拟,研究了风速和倾角不同时风流方向对巷道中瓦斯分布的影响规律.结果表明:倾斜巷道两帮煤壁涌出瓦斯情况下巷道两帮煤壁附近及其上部的两个角上容易积聚高浓度瓦斯,且同一个横断面上部的瓦斯浓度比下部高;风速越大、巷道倾角越大,高浓度瓦斯与空气的交换距离越短,瓦斯与空气充分混合需要的距离越短;下行通风且风速较小时,巷道顶板出现明显的瓦斯逆流现象,逆流区瓦斯浓度远大于瓦斯涌出点下风流一侧的瓦斯浓度,随着风速增大,瓦斯逆流长度逐渐变短.  相似文献   

12.
为更准确反映抽采过程中的煤层瓦斯(甲烷)运移过程,将煤岩视为孔隙-裂隙双重结构、双渗透率非均匀弹性介质,考虑基质瓦斯渗流作用,结合地下水、瓦斯吸附/解吸特性、煤岩变形和渗透率演化等因素的耦合作用,建立考虑基质瓦斯渗流的煤层流固耦合模型;数值模拟地面瓦斯抽采过程,分析煤层瓦斯运移规律和基质渗流作用对瓦斯抽采的影响。研究表明:基质瓦斯和裂隙瓦斯的压力均随时间的增加而降低,两者差值先增大后减小;在模拟工况下,单位时间内基质瓦斯渗流量仅占流入裂隙瓦斯量的0.5%。基质渗流对瓦斯抽采的产能及储层压力有影响;考虑基质瓦斯渗流的双孔隙双渗透率模型预测的产气速率和储层压力下降幅度均小于双孔隙单渗透率模型。  相似文献   

13.
在煤层瓦斯抽采工艺中,抽采钻孔周围煤层瓦斯压力分布状况决定了最佳抽采时间和抽采半径。为研究抽采钻孔周围煤层瓦斯压力分布情况,通过理论分析和数值模拟,构建抽采钻孔周围煤层瓦斯流量表达式;应用达西渗流定律,推导出抽采钻孔周围煤层瓦斯压力解析表达式;采用瓦斯抽采半径随抽采时间的变化速率作为确定瓦斯抽采最佳时间的依据,给出临界值,并进行工程应用。结果表明:随着测定点与钻孔中心距离的增加,煤层瓦斯压力逐步上升,最终趋于原始值;随着抽采时间延长,瓦斯压力大致呈指数规律下降;瓦斯抽采半径随抽采时间的变化速率临界值可暂定为0.47。  相似文献   

14.
《安全》2022,(1)
1研究背景和意义随着我国许多煤矿相继进入深部开采,深部高瓦斯压力、高地应力、低渗透性煤层及其围岩之间的耦合作用不断增强,煤岩瓦斯复合动力灾害日益加剧。迄今国内外学者对煤与瓦斯突出以及冲击地压机理的认识仍然处于半定量阶段,对于发生机理较为复杂的煤岩瓦斯复合动力灾害的认识更处于初步探讨阶段。  相似文献   

15.
通过分析温度和地应力对深部煤体瓦斯运移规律的影响,建立了瓦斯渗流热流固耦合模型,以贵州省松和煤矿15#煤层12150采煤工作面为例,利用ComsolMultiphysics软件对深部煤层工作面前方瓦斯渗流进行数值模拟。研究结果表明:受采动影响,在工作面前方“三带”中,卸压区存在大量新裂隙和通道,瓦斯压力梯度最大;在应力集中区至卸压区过渡段瓦斯压力下降速度最快,解释了在该区容易导致瓦斯突出的原因;在应力集中区,瓦斯压力和有效应力较高,压缩煤体,导致煤颗粒排列紧密,渗透率降低;在卸压区,煤体体积形变逐渐变大,产生了很多新裂隙,发生扩容,渗流通道贯通,导致渗透率急剧增加,因此在应力最大处形成了煤层渗透率最低点,随着时间的推移,渗透率最低点逐步远离工作面;在采煤工作面前方,虽然温度升高后瓦斯热运动加剧,有促进瓦斯渗透率的趋势,但由于工作面前方有效应力较大,煤体受热膨胀应力小于有效应力,导致煤体内膨胀,渗流空间减小,造成渗透率降低。  相似文献   

16.
煤层瓦斯流动存在启动压力,在预抽钻孔抽采瓦斯的后期瓦斯渗流出现非Darcy渗流的现象,同时煤层瓦斯压力、吸附膨胀应力、有效应力等物性参数亦发生改变。为得到为得到启动压力对抽采的影响作用,基于煤岩弹性理论和瓦斯渗流理论,研究了在启动压力作用下非Darcy渗流现象,得到了考虑启动压力的达西定律,建立了考虑启动压力、地应力、吸附膨胀应力、孔隙压力共同作用的煤岩瓦斯流固耦合数学模型。采用建立的模型对漳村煤矿2601工作面瓦斯抽采钻孔间距进行数值模拟研究,研究结果表明:建立的考虑启动压力的煤岩瓦斯流固耦合数学模型具有一定的可靠性,一定负压下启动压力影响钻孔抽采范围。最终给出了漳村煤矿2601工作面预抽钻孔抽采设计参数。  相似文献   

17.
煤层瓦斯流动存在启动压力,在预抽钻孔抽采瓦斯的后期瓦斯渗流出现非Darcy渗流的现象,同时煤层瓦斯压力、吸附膨胀应力、有效应力等物性参数亦发生改变。为得到为得到启动压力对抽采的影响作用,基于煤岩弹性理论和瓦斯渗流理论,研究了在启动压力作用下非Darcy渗流现象,得到了考虑启动压力的达西定律,建立了考虑启动压力、地应力、吸附膨胀应力、孔隙压力共同作用的煤岩瓦斯流固耦合数学模型。采用建立的模型对漳村煤矿2601工作面瓦斯抽采钻孔间距进行数值模拟研究,研究结果表明:建立的考虑启动压力的煤岩瓦斯流固耦合数学模型具有一定的可靠性,一定负压下启动压力影响钻孔抽采范围。最终给出了漳村煤矿2601工作面预抽钻孔抽采设计参数。  相似文献   

18.
为解决煤系地层公路隧道施工中瓦斯气体泄漏、爆炸及煤层突出、挤出、压出等地质灾害问题,以西藏拉泽高速公路圭嘎拉隧道为研究对象,采用结构力学理论,结合岩柱爆破损伤范围大小和地应力与煤层瓦斯压力作用下岩柱安全厚度,得出不同煤层倾角隧道石门揭煤的岩柱安全厚度计算式,得到圭嘎拉隧道石门揭煤岩柱安全厚度;运用数值模拟法建立煤系地层公路隧道石门揭煤动力学模型,研究石门揭煤掏槽爆破微差间隔时间对煤层及其顶底板的动力特性,获得煤层与顶底板动力响应特征。结果表明:圭嘎啦隧道石门揭煤安全厚度2.8 m是合理的;随着微差间隔时间增加,动力响应强度降低,石门揭煤爆破最佳微差间隔时间为50 ms;随着煤层倾角增大,动力响应强度增强,应适当减小急倾斜和倾斜煤层揭煤深度,可适当增大缓倾斜煤层揭煤深度。  相似文献   

19.
基于灰熵理论和RBF神经网络理论,提出了一种改进的灰色神经网络深部煤层瓦斯含量预测模型。该模型首先利用灰熵关联度确定影响深部煤层瓦斯含量的主控因素,构建多个GM预测模型进行精度分析,寻求最优的灰色预测模块对分析系统进行一次预测,再利用灰色模型白化微分方程解序列相邻两元素分别与相应期望值作差,构建一个差值序列作为RBF神经网络输出对分析系统进行二次预测,得到的差序列预测结果的差值即为深部煤层瓦斯含量的预测值,从而构建了基于差值GM-RBF神经网络组合模型的深部煤层瓦斯含量预测体系。实际应用表明:差值GM-RBF神经网络组合模型的精度评价指标MAE、MAPE、RMSE、RRMSE分别为0.233 1、3.25%、0.2778、4.04%,远优于单一灰色、RBF模型;与传统GM-RBF组合模型相比,MAE和MAPE分别减小了23.8%和22.1%,RMSE和RRMSE分别减小了20.5%和17%。由此可见,以差值结合法将最优灰色模块与RBF神经网络有效结合起来的瓦斯含量预测体系增强了模型的泛化能力和数据利用率,精度更高,稳定性更好,能够满足深部煤层瓦斯含量准确预测的要求,为深部煤与瓦斯安全高效开采提供依据。  相似文献   

20.
为了进一步掌握浅埋煤层开采覆岩运动规律,以神东矿区某矿22616面为工程背景,采用数值计算与相似试验相结合的方法研究了浅埋煤层开采覆岩下沉位移与应力分布特征,并进行了现场验证。发现现场监测数据和数值计算与相似试验结果较为一致,表明22616面属于典型浅埋煤层工作面,老顶初次来压步距46~48 m,周来压步距12~19 m,来压期间老顶瞬间垮落,下沉位移明显,台阶下沉特征显著;随工作面推移,采场前方煤体20 m范围内出现超前支承压力,应力峰值达到4.3 MPa,因此应提前采取加强支护措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号