首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
IntroductionThis study explored how drivers adapt to inclement weather in terms of driving speed, situational awareness, and visibility as road surface conditions change from dry to slippery and visibility decreases. The proposed work mined existing data from the SHRP 2 NDS for drivers who were involved in weather-related crash and near-crash events. Baseline events were also mined to create related metadata necessary for behavioral comparisons. Methods: Researchers attempted, to the greatest extent possible, to match non-adverse-weather driving scenarios that are similar to the crash and near-crash event for each driver. The ideal match scenario would be at a day prior to the crash during non-adverse weather conditions having the same driver, at the same time of day, with the same traffic level on the same road on which the crash or near-crash occurred. Once the matched scenarios have been identified, a detailed analysis will be performed to determine how a driver’s behavior changed from normal driving to inclement-weather driving. Results: Data collected indicated that, irrespective of site location (i.e., state), most crashes and near-crashes occurred in rain, with only about 12% occurring in snowy conditions. Also, the number of near-crashes was almost double the number of crashes showing that many drivers were able to avoid a crash by executing an evasive maneuver such as braking or steering. Conclusions: Most types of near crashes were rear-end and sideswipe avoidance epochs, as the drivers may have had a difficult time merging or trying to change lanes due to low visibility or traffic. Hard braking combined with swerving were the most commonly used evasive maneuvers, occurring when drivers did not adjust their speeds accordingly for specific situations. Practical applications: Results from this study are expected to be utilized to educate and guide drivers toward more confident and strategic driving behavior in adverse weather.  相似文献   

2.
Problem: Previous research have focused extensively on crashes, however near crashes provide additional data on driver errors leading to critical events as well as evasive maneuvers employed to avoid crashes. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study contains extensive data on real world driving and offers a reliable methodology to study near crashes. The current study utilized the SHRP2 database to compare the rate and characteristics associated with near crashes among risky drivers. Methods: A subset from the SHRP2 database consisting of 4,818 near crashes for teen (16–19 yrs), young adult (20–24 yrs), adult (35–54 yrs), and older (70+ yrs) drivers was used. Near crashes were classified into seven incident types: rear-end, road departure, intersection, head-on, side-swipe, pedestrian/cyclist, and animal. Near crash rates, incident type, secondary tasks, and evasive maneuvers were compared across age groups. For rear-end near crashes, near crash severity, max deceleration, and time-to-collision at braking were compared across age. Results: Near crash rates significantly decreased with increasing age (p < 0.05). Young drivers exhibited greater rear-end (p < 0.05) and road departure (p < 0.05) near crashes compared to adult and older drivers. Intersection near crashes were the most common incident type among older drivers. Evasive maneuver type did not significantly vary across age groups. Near crashes exhibited a longer time-to-collision at braking (p < 0.01) compared to crashes. Summary: These data demonstrate increased total near crash rates among young drivers relative to adult and older drivers. Prevalence of specific near crash types also differed across age groups. Timely execution of evasive maneuvers was a distinguishing factor between crashes or near crashes. Practical Applications: These data can be used to develop more targeted driver training programs and help OEMs optimize ADAS to address the most common errors exhibited by risky drivers.  相似文献   

3.
Introduction: In the last 30 years, China has undergone a dramatic increase in vehicle ownership and a resulting escalation in the number of road crashes. Although crash figures are decreasing today, they remain high; it is therefore important to investigate crash causation mechanisms to further improve road safety in China. Method: To shed more light on the topic, naturalistic driving data was collected in Shanghai as part of the evaluation of a behavior-based safety service. The data collection included instrumenting 47 vehicles belonging to a commercial fleet with data acquisition systems. From the overall sample, 91 rear-end crash or near-crash (CNC) events, triggered by 24 drivers, were used in the analysis. The CNC were annotated by three researchers, through an expert assessment methodology based on videos and kinematic variables. Results: The results show that the main factor behind the rear-end CNC was the adoption of very small safety margins. In contrast to results from previous studies in the US, the following vehicles' drivers typically had their eyes on the road and reacted quickly in response to the evolving conflict in most events. When delayed reactions occurred, they were mainly due to driving-related visual scanning mismatches (e.g., mirror checks) rather than visual distraction. Finally, the study identified four main conflict scenarios that represent the typical development of rear-end conflicts in this data. Conclusions: The findings of this study have several practical applications, such as informing the specifications of in-vehicle safety measures and automated driving and providing input into the design of coaching/training procedures to improve the driving habits of drivers.  相似文献   

4.
OBJECTIVE: Signalized intersections are accident-prone areas especially for rear-end crashes due to the fact that the diversity of the braking behaviors of drivers increases during the signal change. The objective of this article is to improve knowledge of the relationship between rear-end crashes occurring at signalized intersections and a series of potential traffic risk factors classified by driver characteristics, environments, and vehicle types. METHODS: Based on the 2001 Florida crash database, the classification tree method and Quasi-induced exposure concept were used to perform the statistical analysis. Two binary classification tree models were developed in this study. One was used for the crash comparison between rear-end and non-rear-end to identify those specific trends of the rear-end crashes. The other was constructed for the comparison between striking vehicles/drivers (at-fault) and struck vehicles/drivers (not-at-fault) to find more complex crash pattern associated with the traffic attributes of driver, vehicle, and environment. RESULTS: The modeling results showed that the rear-end crashes are over-presented in the higher speed limits (45-55 mph); the rear-end crash propensity for daytime is apparently larger than nighttime; and the reduction of braking capacity due to wet and slippery road surface conditions would definitely contribute to rear-end crashes, especially at intersections with higher speed limits. The tree model segmented drivers into four homogeneous age groups: < 21 years, 21-31 years, 32-75 years, and > 75 years. The youngest driver group shows the largest crash propensity; in the 21-31 age group, the male drivers are over-involved in rear-end crashes under adverse weather conditions and the 32-75 years drivers driving large size vehicles have a larger crash propensity compared to those driving passenger vehicles. CONCLUSIONS: Combined with the quasi-induced exposure concept, the classification tree method is a proper statistical tool for traffic-safety analysis to investigate crash propensity. Compared to the logistic regression models, tree models have advantages for handling continuous independent variables and easily explaining the complex interaction effect with more than two independent variables. This research recommended that at signalized intersections with higher speed limits, reducing the speed limit to 40 mph efficiently contribute to a lower accident rate. Drivers involved in alcohol use may increase not only rear-end crash risk but also the driver injury severity. Education and enforcement countermeasures should focus on the driver group younger than 21 years. Further studies are suggested to compare crash risk distributions of the driver age for other main crash types to seek corresponding traffic countermeasures.  相似文献   

5.
IntroductionTeen drivers crash at a much higher rate than adult drivers, with distractions found as a factor in nearly 6 out of 10 moderate-to-severe teen crashes. As the driving environment continues to rapidly evolve, it is important to examine the effect these changes may be having on our youngest and most vulnerable drivers.MethodThe purpose of this study was to identify types of vehicle crashes teens are most frequently involved in, as well as the distracting activities being engaged in leading up to these crashes, with a focus on identifying changes or trends over time. We examined 2,229 naturalistic driving videos involving drivers ages 16–19. These videos captured crashes occurring between 2007 and 2015. The data of interest for this study included crash type, behaviors drivers engaged in leading up to the collision, total duration of time the driver's eyes were off the forward roadway, and duration of the longest glance away from forward.ResultsRear-end crashes increased significantly (annual % change = 3.23 [2.40–4.05]), corresponding with national data trends. Among cell phone related crashes, a significant shift occurred, from talking/listening to operating/looking (annual % change = 4.22 [1.15–7.29]). Among rear-end crashes, there was an increase in the time drivers' eyes were off the road (β = 0.1527, P = 0.0004) and durations of longest glances away (β = 0.1020, P = 0.0014).ConclusionsFindings suggest that shifts in the way cell phones are being used, from talking/listening to operating/looking, may be a cause of the increasing number of rear-end crashes for teen drivers.Practical applicationsUnderstanding the role that cell phone use plays in teen driver crashes is extremely important. Knowing how and when teens are engaging in this behavior is the only way effective technologies can be developed for mitigating these crashes.  相似文献   

6.
Introduction: Concerns have been raised that the nonlinear relation between crashes and travel exposure invalidates the conventional use of crash rates to control for exposure. A new metric of exposure that bears a linear association to crashes was used as basis for calculating unbiased crash risks. This study compared the two methods – conventional crash rates and new adjusted crash risk – for assessing the effect of driver age, gender, and time of day on the risk of crash involvement and crash fatality. Method: We used police reports of single-car and multi-car crashes with fatal and nonfatal driver injuries that occurred during 2002–2012 in Great Britain. Results: Conventional crash rates were highest in the youngest age group and declined steeply until age 60–69 years. The adjusted crash risk instead peaked at age 21–29 years and reduced gradually with age. The risk of nighttime driving, especially among teenage drivers, was much smaller when based on adjusted crash risks. Finally, the adjusted fatality risk incurred by elderly drivers remained constant across time of day, suggesting that their risk of sustaining a fatal injury due to a crash is more attributable to excess fragility than to crash seriousness. Conclusions: Our findings demonstrate a biasing effect of low travel exposure on conventional crash rates. This implies that conventional methods do not yield meaningful comparisons of crash risk between driver groups and driving conditions of varying exposure to risk. The excess crash rates typically associated with teenage and elderly drivers as well as nighttime driving are attributed in part to overestimation of risk at low travel exposure. Practical Applications: Greater attention should be directed toward crash involvement among drivers in their 20s and 30s as well as younger drivers. Countermeasures should focus on the role of physical vulnerability in fatality risk of elderly drivers.  相似文献   

7.
Introduction: Intersections are the most dangerous locations in urban traffic. The present study aims to investigate drivers’ visual scanning behavior at signalized and unsignalized intersections. Method: Naturalistic driving data at 318 green phase signalized intersections and 300 unsignalized ones were collected. Drivers’ glance allocations were manually categorized into 10 areas of interest (AOIs), based on which three feature subsets were extracted including glance allocation frequencies, durations and AOI transition probabilities. The extracted features at signalized and unsignalized intersections were compared. Features with statistical significances were integrated to characterize drivers’ scanning patterns using the hierarchical clustering method. Andrews Curve was adopted to visually illustrate the clustering results of high-dimensional data. Results: Results showed that drivers going straight across signalized intersections had more often glances at the left view mirror and longer fixation on the near left area. When turning left, drivers near signalized intersections had more frequent glances at the left view mirror, fixated much longer on the forward and rearview mirror area, and had higher transition probabilities from near left to far left. Compared with drivers’ scanning patterns in left turning maneuver at signalized intersections, drivers with higher situation awareness levels would divide more attention to the forward and right areas than at unsignalized intersections. Conclusions: This study revealed that intersection types made differences on drivers’ scanning behavior. Practical applications: These findings suggest that future applications in advanced driver assistance systems and driver training programs should recommend different scanning strategies to drivers at different types of intersections.  相似文献   

8.
Objective: The objective of this study was to estimate the prevalence and odds of fleet driver errors and potentially distracting behaviors just prior to rear-end versus angle crashes.

Methods: Analysis of naturalistic driving videos among fleet services drivers for errors and potentially distracting behaviors occurring in the 6 s before crash impact. Categorical variables were examined using the Pearson's chi-square test, and continuous variables, such as eyes-off-road time, were compared using the Student's t-test. Multivariable logistic regression was used to estimate the odds of a driver error or potentially distracting behavior being present in the seconds before rear-end versus angle crashes.

Results: Of the 229 crashes analyzed, 101 (44%) were rear-end and 128 (56%) were angle crashes. Driver age, gender, and presence of passengers did not differ significantly by crash type. Over 95% of rear-end crashes involved inadequate surveillance compared to only 52% of angle crashes (P < .0001). Almost 65% of rear-end crashes involved a potentially distracting driver behavior, whereas less than 40% of angle crashes involved these behaviors (P < .01). On average, drivers spent 4.4 s with their eyes off the road while operating or manipulating their cell phone. Drivers in rear-end crashes were at 3.06 (95% confidence interval [CI], 1.73–5.44) times adjusted higher odds of being potentially distracted than those in angle crashes.

Conclusions: Fleet driver driving errors and potentially distracting behaviors are frequent. This analysis provides data to inform safe driving interventions for fleet services drivers. Further research is needed in effective interventions to reduce the likelihood of drivers' distracting behaviors and errors that may potentially reducing crashes.  相似文献   


9.
In several countries, older drivers are disproportionately involved in fatal road traffic crashes (RTCs) for various reasons. This study maps the circumstances of occurrence of crashes involving older drivers that are fatal to either them or other road users and highlights differences between them. Sweden’s national in-depth studies of fatal RTCs archive was used and focus was placed on crashes in which a driver aged 65 years or older was involved between 2002 and 2004 (n = 197). Thirteen driver and crash characteristics were analyzed simultaneously and typical crash patterns (classes) were highlighted. For each pattern, the proportions of crashes fatal to the older driver vs. to someone else were compared. Four patterns were identified: (1) crashes on low-speed stretches, involving left turn and intersections; (2) crashes involving very old drivers and older vehicles, (3) rear-end collisions on high-speed stretches; and (4) head-on and single-vehicle crashes in rural areas. Older drivers dying in the crash were over-represented in classes 2 and 4. The study shows that when older drivers are involved in fatal RTCs, they are often the ones who die (60%). Typical circumstances surrounding their involvement include manoeuvring difficulties, fast-moving traffic, and colliding in an old vehicle. Preventing fatal RTCs involving older drivers requires not only age-specific but also general measures.  相似文献   

10.
Introduction: Graduated driver licensing (GDL) systems have been shown to reduce rates of crashes, injuries, and deaths of young novice drivers. However, approximately one in three new drivers in the United States obtain their first driver’s license at age 18 or older, and thus are exempt from most or all provisions of GDL in most states. Method: In July 2015, the state of Indiana updated its GDL program, extending its restrictions on driving at night and on carrying passengers during the first 6 months of independent driving, previously only applicable to new drivers younger than 18, to all newly-licensed drivers younger than 21 years of age. The current study examined monthly rates of crashes per licensed driver under the affected conditions (driving at night and driving with passengers) among Indiana drivers first licensed at ages 18, 19, and 20 under the updated GDL system compared with drivers licensed at the same ages under the previous GDL system. We used Poisson regression to estimate the association between the GDL system and crash rates, while attempting to control for other factors that might have also influenced crash rates. We used linear regression to estimate the association between the GDL system and the proportion of all crashes that occurred under conditions restricted by the GDL program. Results: Results showed, contrary to expectations, that rates of crashes during restricted nighttime hours and with passengers were higher among drivers licensed under the updated GDL system. This mirrored a statewide increase in crash rates among drivers of all ages over the study period and likely reflected increased overall driving exposure. The proportions of all crashes that were at night or with passengers did not change. Practical Applications: More research is needed to understand how older novice drivers respond when GDL systems originally designed for younger novice drivers are applied to them.  相似文献   

11.
IntroductionDriving is important for well-being among older adults, but age-related conditions are associated with driving reduction or cessation and increased crash risk for older drivers. Our objectives were to describe population-based rates of older drivers’ licensing and per-driver rates of crashes and moving violations.Methods: We examined individual-level statewide driver licensing, crash, and traffic citation data among all New Jersey drivers aged ≥ 65 and a 35- to 54-year-old comparison group during 2010–2014. Rate ratios (RR) of crashes and moving violations were estimated using Poisson regression.Results: Overall, 86% of males and 71% of females aged ≥ 65 held a valid driver’s license. Older drivers had 27% lower per-driver crash rates than middle-aged drivers (RR: 0.73, 95% CI: 0.73, 0.74)—with appreciable differences by sex—but 40% higher fatal crash rates (RR: 1.40 [1.24, 1.58]). Moving violation rates among older drivers were 72% lower than middle-aged drivers (RR: 0.28 [0.28, 0.28]).Conclusion: The majority of older adults are licensed, with substantial variation by age and sex. Older drivers have higher rates of fatal crashes but lower rates of moving violations compared with middle-aged drivers.Practical applications: Future research is needed to understand the extent to which older adults drive and to identify opportunities to further reduce risk of crashes and resultant injuries among older adults.  相似文献   

12.
IntroductionThe rear-end crash is one of the most common freeway crash types, and driver distraction is often cited as a leading cause of rear-end crashes. Previous research indicates that driver distraction could have negative effects on driving performance, but the specific association between driver distraction and crash risk is still not fully revealed. This study sought to understand the mechanism by which driver distraction, defined as secondary task distraction, could influence crash risk, as indicated by a driver's reaction time, in freeway car-following situations.MethodA statistical analysis, exploring the causal model structure regarding drivers’ distraction impacts on reaction times, was conducted. Distraction duration, distraction scenario, and secondary task type were chosen as distraction-related factors. Besides, exogenous factors including weather, visual obstruction, lighting condition, traffic density, and intersection presence and endogenous factors including driver age and gender were considered.ResultsThere was an association between driver distraction and reaction time in the sample freeway rear-end events from SHRP 2 NDS database. Distraction duration, the distracted status when a leader braked, and secondary task type were related to reaction time, while all other factors showed no significant effect on reaction time.ConclusionsThe analysis showed that driver distraction duration is the primary direct cause of the increase in reaction time, with other factors having indirect effects mediated by distraction duration. Longer distraction duration, the distracted status when a leader braked, and engaging in auditory-visual-manual secondary task tended to result in longer reaction times.Practical applicationsGiven drivers will be distracted occasionally, countermeasures which shorten distraction duration or avoid distraction presence while a leader vehicle brakes are worth considering. This study helps better understand the mechanism of freeway rear-end events in car-following situations, and provides a methodology that can be adopted to study the association between driver behavior and driving features.  相似文献   

13.
Introduction: Driver’s evasive action is closely associated with collision risk in a critical traffic event. To quantify collision risk, surrogate safety measures (SSMs) have been estimated using vehicle trajectories. However, vehicle trajectories cannot clearly capture presence and time of driver’s evasive action. Thus, this study determines the driver’s evasive action based on his/her use of accelerator and brake pedals, and analyzes the effects of the driver’s evasive action time (i.e., duration of evasive action) on rear-end collision risk. Method: Fifty drivers’ car-following behavior on a freeway was observed using a driving simulator. An SSM called “Deceleration Rate to Avoid Crash (DRAC)” and the evasive action time were determined for each driver using the data from the driving simulator. Each driver tested two traffic scenarios – Cars and Trucks scenarios where conflicting vehicles were cars and trucks, respectively. The factors related to DRAC were identified and their effects on DRAC were analyzed using the Generalized Linear Models and random effects models. Results: DRAC decreased with the evasive action time and DRAC was closely related to drivers’ gender and driving experience at the road sections where evasive action to avoid collision was required. DRAC was also significantly different between Cars and Trucks scenarios. The effect of the evasive action time on DRAC varied among different drivers, particularly in the Trucks scenario. Conclusions: Longer evasive action time can significantly reduce crash risk. Driver characteristics are more closely related to effective evasive action in complex driving conditions. Practical Applications: Based on the findings of this study, driver warning information can be developed to alert drivers to take specific evasive action that reduces collision risk in a critical traffic event. The information is likely to reduce the variability of the driver’s evasive action and the speed variations among different drivers.  相似文献   

14.
Introduction:The quasi-induced exposure (QIE) method has been widely implemented into traffic safety research. One of the key assumptions of QIE method is that not-at-fault drivers represent the driving population at the time of a crash. Recent studies have validated the QIE representative assumption using not-at-fault drivers from three-or-more vehicle crashes (excluding the first not-at-fault drivers; D3_other) as the reference group in single state crash databases. However, it is unclear if the QIE representativeness assumption is valid on a national scale and is a representative sample of driving population in the United States. The aims of this study were to assess the QIE representativeness assumption on a national scale and to evaluate if D3_other could serve as a representative sample of the U.S. driving population. Method: Using the Fatality Analysis Reporting System (FARS) and the National Occupant Protection Use Survey (NOPUS), distributions of driver gender, age, vehicle type, time, and roadway type among the not-at-fault drivers in clean two-vehicle crashes, the first not-at-fault drivers in three-or-more-vehicle crashes, and the remaining not-at-fault drivers in three-or-more vehicle crashes were compared to the driver population observed in NOPUS. Results: The results showed that with respect to driver gender, vehicle type, time, and roadway type, drivers among D3_other did not show statistical significant difference from NOPUS observations. The age distribution of D3_other driver was not practically different to NOPUS observations. Conclusions: Overall, we conclude that D3_other drivers in FARS represents the driving population at the time of the crash. Practical applications: Our study provides a solid foundation for future studies to utilize D3_other as the reference group to validate the QIE representativeness assumption and has potential to increase the generalizability of future FARS studies.  相似文献   

15.
Introduction: Fatal crashes that include at least one fatality of an occupant within 30 days of the crash cause large numbers of injured persons and property losses, especially when a truck is involved. Method: To better understand the underlying effects of truck-driver-related characteristics in fatal crashes, a five-year (from 2012 to 2016) dataset from the Fatality Analysis Reporting System (FARS) was used for analysis. Based on demographic attributes, driving violation behavior, crash histories, and conviction records of truck drivers, a latent class clustering analysis was applied to classify truck drivers into three groups, namely, ‘‘middle-aged and elderly drivers with low risk of driving violations and high historical crash records,” ‘‘drivers with high risk of driving violations and high historical crash records,” and ‘‘middle-aged drivers with no driving violations and conviction records.” Next, equivalent fatalities were used to scale fatal crash severities into three levels. Subsequently, a partial proportional odds (PPO) model for each driver group was developed to identify the risk factors associated with the crash severity. Results' Conclusions: The model estimation results showed that the risk factors, as well as their impacts on different driver groups, were different. Adverse weather conditions, rural areas, curved alignments, tractor-trailer units, heavier weights and various collision manners were significantly associated with the crash severities in all driver groups, whereas driving violation behaviors such as driving under the influence of alcohol or drugs, fatigue, or carelessness were significantly associated with the high-risk group only, and fewer risk factors and minor marginal effects were identified for the low-risk groups. Practical Applications: Corresponding countermeasures for specific truck driver groups are proposed. And drivers with high risk of driving violations and high historical crash records should be more concerned.  相似文献   

16.
Introduction: This article analyzes the effect of driver’s age in crash severity with a particular focus on those over the age of 65. The greater frequency and longevity of older drivers around the world suggests the need to introduce a possible segmentation within this group at risk, thus eliminating the generic interval of 65 and over as applied today in road safety data and in the automobile insurance sector. Method: We investigate differences in the severity of traffic crashes among two subgroups of older drivers –young-older (65–75) and old-older (75+), and findings are compared with the age interval of drivers under 65. Here, we draw on data for 2016 provided by Spanish Traffic Authority. Parametric and semi-parametric regression models are applied. Results: We identified the factors related to the crash, vehicle, and driver that have a significant impact on the probability of the crash being slight, serious, or fatal for the different age groups. Conclusions: We found that crash severity and the expected costs of crashes significantly increase when the driver is over the age of 75. Practical Applications: Our results have obvious implications for regulators responsible for road safety policies – most specifically as they consider there should be specific driver licensing requirements and driving training for elderly – and for the automobile insurance industry, which to date has not examined the impact that the longevity of drivers is likely to have on their balance sheets.  相似文献   

17.
IntroductionThis paper summarizes the findings on novice teenage driving outcomes (e.g., crashes and risky driving behaviors) from the Naturalistic Teenage Driving Study.MethodSurvey and driving data from a data acquisition system (global positioning system, accelerometers, cameras) were collected from 42 newly licensed teenage drivers and their parents during the first 18 months of teenage licensure; stress responsivity was also measured in teenagers.ResultOverall teenage crash and near-crash (CNC) rates declined over time, but were > 4 times higher among teenagers than adults. Contributing factors to teenage CNC rates included secondary task engagement (e.g., distraction), kinematic risky driving, low stress responsivity, and risky social norms.ConclusionsThe data support the contention that the high novice teenage CNC risk is due both to inexperience and risky driving behavior, particularly kinematic risky driving and secondary task engagement.Practical ApplicationsGraduated driver licensing policy and other prevention efforts should focus on kinematic risky driving, secondary task engagement, and risky social norms.  相似文献   

18.
Purpose: Motor-vehicle crashes continue to be the leading cause of death for teenagers in the United States. The United States has some of the youngest legal driving ages worldwide. The objective of this study was to determine rates and factors associated with injury crashes among 14- and 15-year-old drivers and how these varied by rurality. Methods: Data for this cross-sectional study of 14- and 15-year-old drivers were obtained from the Iowa Department of Transportation from 2001 to 2013. Crash and injury crash rates were calculated by rurality. The relationship between crash and driver factors and injury was assessed using logistic regression. Findings: Teen drivers, aged 14 and 15 years, had a statewide crash rate of 8 per 1,000 drivers from 2001 to 2013. The majority of crashes occurred in urban areas (51%), followed by in town (29%), remote rural areas (13%), and suburban areas (7%). Crash and injury crash rates increased as level of rurality increased. The odds of an injury crash increased more than 10-fold with the presence of multiple other teens as passengers, compared to no passengers (OR = 10.7, 95% CI: 7.1–16.2). Conclusions: Although 14- and 15-year-old drivers in Iowa have either limited unsupervised (school permits) or supervised only driving restrictions, they are overrepresented in terms of crashes and injury crashes. Rural roads and multiple teen passengers are particularly problematic in terms of injury outcomes. Practical applications: Results from this study support passenger restrictions and teen driving interventions designed with a rural focus.  相似文献   

19.
INTRODUCTION: This study was designed to explore the temporal aspects of crashes for probationary and non-probationary drivers. METHODS: Data from the West Australian Road Injury Database from 1996-2000 were used to calculate age-sex-specific crash rates per 100,000 person-days and to plot proportions of fatal and hospital crashes by time for probationary and non-probationary drivers. The population attributable risk was used to estimate the potential number of lives saved by nighttime driving restriction in the probationary period. RESULTS: Probationary drivers were seven times more likely to crash than non-probationary drivers. While the highest number of crashes was in the daytime, probationary drivers had a higher proportion of fatal or hospitalization crashes at night than non-probationary drivers. CONCLUSION: Restrictions on driving at night could form part of graduated driver training. Even if some probationary drivers disobeyed the restriction, a substantial reduction in car occupant fatalities and hospitalizations could result.  相似文献   

20.

Introduction

The high crash rate of youthful novice drivers has been recognized for half a century. Over the last decade, graduated driver licensing (GDL) systems, which extend the period of supervised driving and limit the novice's exposure to higher-risk conditions (such as nighttime driving), have effectively reduced crash involvements of novice drivers.

Method

This study used data from the Fatality Analysis Reporting System (FARS) and the implementation dates of GDL laws in a state-by-year panel study to evaluate the effectiveness of two key elements of GDL laws: nighttime restrictions and passenger limitations.

Results

Nighttime restrictions were found to reduce 16- and 17-year-old driver involvements in nighttime fatal crashes by an estimated 10% and 16- and 17-year-old drinking drivers in nighttime fatal crashes by 13%. Passenger restrictions were found to reduce 16- and 17-year-old driver involvements in fatal crashes with teen passengers by an estimated 9%.

Conclusions

These results confirm the effectiveness of these provisions in GDL systems. Impact on Public Health. States without the nighttime or passenger restrictions in their GDL law should strongly consider adopting them.

Impact on Industry

The results of this study indicate that nighttime restrictions and passenger limitations are very important components of any GDL law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号