首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Introduction: Pedestrian fatalities in the United States increased 45.5% between 2009 and 2017. More than 85% of those additional pedestrian fatalities occurred at night. Method: We examine Fatality Analysis Reporting System (FARS) data for fatal pedestrian crashes that occurred in the dark between 2002 and 2017. Within-variable and before/after examinations of crashes in terms of infrastructure, user, vehicle, and situational characteristics are performed with one-way analysis of variance (ANOVA) and two-sample t-tests. We model changes in crash characteristic proportions between 2002–2009 and 2010–2017 using linear regressions and test for autocorrelation with Breusch-Godfrey tests. Results: The increase in fatal nighttime pedestrian crashes is most strongly correlated with infrastructure factors: non-intersection unmarked locations (saw 80.8% of additional fatalities); 40–45 mph roads (54.6%); five-lane roads (40.7%); urban (99.7%); and arterials (81.1%). In addition, SUVs were involved in 39.7% of additional fatalities, overrepresenting their share of the fleet. Increased pedestrian alcohol and drug involvement warrant further investigation. The age of pedestrians killed increased more (18.1%) than the national average (3.2%). Conclusions: By identifying factors related to the increase in nighttime pedestrian fatalities, this work constitutes a vital first step in making our streets safer for pedestrians. Practical Applications: More research is needed to understand the efficacy of different solutions, but this paper provides guidance for such future research. Engineering solutions such as road diets or traffic calming may be used to improve identified infrastructure issues by reducing vehicle speeds and road widths. Rethinking vehicle design, especially high front profiles, may improve vehicle issues. However, the problems giving rise to these pedestrian fatalities are likely a result of not only engineering issues but also interrelated social and political factors. Solutions may be correspondingly comprehensive, employing non-linear, systems-based approaches such as Safe Systems.  相似文献   

3.
Introduction: The high percentage of fatalities in pedestrian-involved crashes is a critical social problem. The purpose of this study is to investigate factors influencing injury severity in pedestrian crashes by examining the demographic and socioeconomic characteristics of the regions where crashes occurred. Method: To understand the correlation between the unobserved characteristics of pedestrian crashes in a defined region, we apply a hierarchical ordered model, in which we set crash characteristics as lower-level variables and municipality characteristics as upper-level. Pedestrian crash data were collected and analyzed for a three-year period from 2011 to 2013. The estimation results show the statistically significant factors that increase injury severity of pedestrian crashes. Results: At the crash level, the factors associated with increased severity of pedestrian injury include intoxicated drivers, road-crossing pedestrians, elderly pedestrians, heavy vehicles, wide roads, darkness, and fog. At the municipality level, municipalities with low population density, lower level of financial independence, fewer doctors, and a higher percentage of elderly residents experience more severe pedestrian crashes. Municipalities ranked as having the top 10% pedestrian fatality rate (fatalities per 100,000 residents) have rates 7.4 times higher than municipalities with the lowest 10% rate of fatalities. Their demographic and socioeconomic characteristics also have significant differences. The proposed model accounts for a 7% unexplained variation in injury severity outcomes between the municipalities where crashes occurred. Conclusion: To enhance the safety of vulnerable pedestrians, considerable investments of time and effort in pedestrian safety facilities and zones should be made. More certain and severe punishments should be also given for the traffic violations that increase injury severity of pedestrian crashes. Furthermore, central and local governments should play a cooperative role to reduce pedestrian fatalities. Practical applications: Based on our study results, we suggest policy directions to enhance pedestrian safety.  相似文献   

4.
Objective: In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 NHTSA. Traffic Safety Facts 2012 Pedestrians. Washington, DC: Author; 2014. DOT HS 811 888. [Google Scholar]). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track.

Methods: An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20–30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area.

Results: Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research.

Conclusions: Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).  相似文献   

5.
Introduction: Alcohol-related impairment is a key contributing factor in traffic crashes. However, only a few studies have focused on pedestrian impairment as a crash characteristic. In Louisiana, pedestrian fatalities have been increasing. From 2010 to 2016, the number of pedestrian fatalities increased by 62%. A total of 128 pedestrians were killed in traffic crashes in 2016, and 34.4% of those fatalities involved pedestrians under the influence (PUI) of drugs or alcohol. Furthermore, alcohol-PUI fatalities have increased by 120% from 2010 to 2016. There is a vital need to examine the key contributing attributes that are associated with a high number of PUI crashes. Method: In this study, the research team analyzed Louisiana’s traffic crash data from 2010 to 2016 by applying correspondence regression analysis to identify the key contributing attributes and association patterns based on PUI involved injury levels. Results: The findings identified five risk clusters: intersection crashes at business/industrial locations, mid-block crashes on undivided roadways at residential and business/residential locations, segment related crashes associated with a pedestrian standing in the road, open country crashes with no lighting at night, and pedestrian violation related crashes on divided roadways. The association maps identified several critical attributes that are more associated with fatal and severe PUI crashes. These attributes are dark to no lighting, open country roadways, and non-intersection locations. Practical Applications: The findings of this study may be used to help design effective mitigation strategies to reduce PUI crashes.  相似文献   

6.
Introduction: With the rapid development of transportation infrastructures in precipitous areas, the mileage of freeway tunnels in China has been mounting during the past decade. Provided the semi-constrained space and the monotonous driving environment of freeway tunnels, safety concerns still remain. This study aims to investigate the uniqueness of the relationships between crash severity in freeway tunnels and various contributory factors. Method: The information of 10,081 crashes in the entire freeway network of Guizhou Province, China in 2018 is adopted, from which a subset of 591 crashes in tunnels is extracted. To address spatial variations across various road segments, a two-level binary logistic approach is applied to model crash severity in freeway tunnels. A similar model is also established for crash severity on general freeways as a benchmark. Results: The uniqueness of crash severity in tunnels mainly includes three aspects: (a) the road-segment-level effects are quantifiable with the environmental factors for crash severity in tunnels, but only exist in the random effects for general freeways; (b) tunnel has a significantly higher propensity to cause severe injury in a crash than other locations of a freeway; and (c) different influential factors and levels of contributions are found to crash severity in tunnels compared with on general freeways. Factors including speed limit, tunnel length, truck involvement, rear-end crash, rainy and foggy weather and sequential crash have positive contributions to crash severity in freeway tunnels. Practical applications: Policy implications for traffic control and management are advised to improve traffic safety level in freeway tunnels.  相似文献   

7.
Introduction: The pedestrian hybrid beacon (PHB) is a traffic control device used at pedestrian crossings. A recent Arizona Department of Transportation research effort investigated changes in crashes for different severity levels and crash types (e.g., rear-end crashes) due to the PHB presence, as well as for crashes involving pedestrians and bicycles. Method: Two types of methodologies were used to evaluate the safety of PHBs: (a) an Empirical Bayes (EB) before-after study, and (b) a long-term cross-sectional observational study. For the EB before-after evaluation, the research team considered three reference groups: unsignalized intersections, signalized intersections, and both unsignalized and signalized intersections combined. Results: For the signalized and combined unsignalized and signalized intersection groups, all crash types considered showed statistically significant reductions in crashes (e.g., total crashes, fatal and injury crashes, rear-end crashes, fatal and injury rear-end crashes, angle crashes, fatal and injury angle crashes, pedestrian-related crashes, and fatal and injury pedestrian-related crashes). A cross-sectional study was conducted with a larger number of PHBs (186) to identify relationships between roadway characteristics and crashes at PHBs, especially with respect to the distance to an adjacent traffic control signal. The distance to an adjacent traffic signal was found to be significant only at the α = 0.1 level, and only for rear-end and fatal and injury rear-end crashes. Conclusions: This analysis represents the largest known study to date on the safety impacts of PHBs, along with a focus on how crossing and geometric characteristics affect crash patterns. The study showed the safety benefits of PHBs for both pedestrians and vehicles. Practical Applications: The findings from this study clearly support the installation of PHBs at midblock or intersection crossings, as well as at crossings on higher-speed roads.  相似文献   

8.
Introduction: Reducing the likelihood of freeway secondary crashes will provide significant safety, operational and environmental benefits. This paper presents a method for assessing the likelihood of freeway secondary crashes with Adaptive Signal Control Systems (ASCS) deployed on alternate routes that are typically used by diverted freeway traffic to avoid any delay or congestion due to a freeway primary crash. Method: The method includes four steps: (1) identification of secondary crashes, (2) verification of alternate routes, (3) assessment of the likelihood of secondary crashes for freeways with ASCS deployed on alternate routes and non-ASCS (i.e. pre-timed, semi- or fully-actuated) alternate routes, and (4) investigation of unobserved heterogeneity of the likelihood of freeway secondary crashes. Four freeway sections (i.e., two with ASCS deployed on alternate routes and two non-ASCS alternate routes) in South Carolina are considered. Results and Conclusions: Findings from the logistic regression modeling reveal significant reduction in the likelihood of secondary crashes for one freeway section (i.e., Charleston I-26 E) with ASCS deployed on alternate route. Other factors such as rear-end crash, dark or limited light, peak period, and annual average daily traffic contribute to the likelihood of freeway secondary crashes. Furthermore, random-parameter logistic regression model results for Charleston I-26 E reveal that unobserved heterogeneity of ASCS effect exists across the observations and ASCS are associated with the reduction of the likelihood of freeway secondary crashes for 84% of the observations (i.e., primary crashes). Location of the primary crash on the freeway is observed to affect the benefit of ASCS toward freeway secondary crash reduction as the primary crash’s location determines how many upstream freeway vehicles will be able to take the alternate route. Practical Applications: Based on the findings, it is recommended that the South Carolina Department of Transportation (SCDOT) considers deploying ASCS on alternate routes parallel to freeway sections where high percentages of secondary crashes are found.  相似文献   

9.
A great number of pedestrians are killed or injured in traffic crashes every year in the US. Vehicle crashes involving pedestrians are often more severe than other crashes because pedestrians are unprotected and are hence more likely to suffer injuries or death if struck by a motor vehicle. To improve pedestrian safety, a variety of treatments such as overhead flashing beacons, in-street crossing signs, in-roadway warning lights, and traffic calming measures have been used. One treatment, in-street yield-to-pedestrian channelizing devices (YTPCD), has been used in many states, including Pennsylvania, where approximately 10% of traffic crash fatalities are pedestrians each year.In an effort to improve pedestrian safety, the Pennsylvania Department of Transportation (PennDOT) has widely deployed YTPCD. This study examines the spillover (indirect) effects of such devices on motorist and pedestrian behavior. With data collected from eight sites that did not have but were in the vicinity of YTPCD implementations, analysis results show that such devices have significantly positive spillover effects on pedestrian safety at intersections, but they tend to have negative spillover effects at mid-block locations. Overall, the YTPCD appear to have a positive impact on changing motorist and pedestrian behavior, and merit consideration for future usage of this type of device.  相似文献   

10.
Introduction: Safety of pedestrians depends, among other factors, on their behavior while crossing the road. This study aims to assess behaviors of pedestrians at signalized crosswalks. Method: Following a literature review and a pilot study, 25 vital pedestrian crossing factors and behaviors were determined. Then data was randomly collected for 708 pedestrians at 10 lighted crossings in Sharjah (UAE), five at road intersections and five mid-block crossings. Results: Results indicated that 17.4% of pedestrians observed crossed partly or fully on red and that crossing speed was 1.22 m/s, on the average, which is slightly faster than most speeds recorded in the literature. Moreover, female pedestrians were more likely to cross while chatting with others, less likely to cross on red, and more likely to walk slower than male pedestrians. Results also showed that pedestrians who crossed at road intersections walked slower than those who crossed at mid-block crossings. It was also found that longer red pedestrian times and narrower roads tended to encourage pedestrians to cross on red and that the majority of pedestrians did not look around before crossing. Practical implications: Use of the Health Belief Model for pedestrian safety are discussed.  相似文献   

11.
OBJECTIVE: To explore the epidemiology of pedestrian deaths in Dallas County, Texas, and to compare factors associated with pedestrian deaths on expressways versus those that occurred on other roadways. METHODS: We studied all pedestrian deaths among persons 15 years of age or older in Dallas County, Texas, from 1997 to 2004 by linking data from Medical Examiner's office, the Fatality Analysis Reporting System, and local police records. Univariate and multivariate analysis compared various factors associated with death on an expressway. RESULTS: Among 437 pedestrian deaths who were 15 years of age or older, 197 (45%) occurred on expressways; the proportion that occurred on expressways was highest among 15- to 29-year-olds (65%) and was lower with advancing age group (p < 0.01, chi square for trend). At least 36% of these expressway-related pedestrian deaths were known to have been "unintended pedestrians," who had exited a vehicle after being on the roadway, compared with 11% of pedestrian deaths on surface streets (OR 4.6, 95% CI, 2.7-8.1), and this was also highest among younger age groups. Pedestrian deaths on an expressway, compared with deaths on surface streets, remained strongly associated with having been an "unintended pedestrian" (OR 6.2, 95% CI, 3.1-14.0), after controlling for several other variables, including age, sex, race, nighttime of crash, and alcohol involvement. CONCLUSIONS: Expressways are the predominant site of fatal pedestrian crashes among young adults in this urban area. Since many of these deaths were "unintended pedestrians," procedures for management of occupants of disabled vehicles on expressways could have a large impact on pedestrian deaths in young adults.  相似文献   

12.
This study examined whether the number of fatalities on rural interstates in 1989 was higher than would be expected based on experience during 1982–1986 and experience on all other roads. Among the 40 states that increased the speed limit to 65 mph on rural interstates, the number of fatalities was 29% higher than expected. Among the eight states retaining a 55 mph maximum speed limit on rural interstates, the observed number of fatalities was 12% lower than expected, although this reduction was not statistically significant. After adjusting the fatality risk on rural interstates for differences in vehicle miles traveled on those roads and for higher passenger vehicle occupancy rates attributable to possible increases in vacation travel, the increased fatality risk was 19%. These data suggest that the majority of the estimated increase in fatalities on rural interstates in 1989 (almost 400 of the approximately 600 extra deaths) can be attributed to the higher speeds resulting from the higher speed limits. Changes in mileage account for the remaining 200 extra deaths.  相似文献   

13.
Objectives: The objective of this study was to examine the safety effects of increases in U.S. state maximum speed limits during the period 1993–2013.

Methods: Poisson regression was used to model state-by-state annual traffic fatality rates per mile of travel as a function of time, the unemployment rate, the percentage of the driving age population that was younger than 25, per capita alcohol consumption, and the maximum posted speed limit on any road in the state. Separate analyses were conducted for all roads, interstates and freeways, and all other roads.

Results: A 5 mph increase in the maximum state speed limit was associated with an 8% increase in fatality rates on interstates and freeways and a 4% increase on other roads. In total, there were an estimated 33,000 more traffic fatalities during the years 1995–2013 than would have been expected if maximum speed limits had not increased. In 2013 alone, there were approximately 1,900 additional deaths—500 on interstates/freeways and 1,400 on other roads.

Conclusions: There is a definite trend of increased fatality risk when speed limits are raised. As roadway sections with higher speed limits have become more ubiquitous, the increase in fatality risk has extended beyond these roadways. The increase in risk has been so great that it has now largely offset the beneficial effects of some other traffic safety strategies. State policy makers should keep this trade-off in mind when considering proposals to raise speed limits.  相似文献   


14.
IntroductionPedestrian fatalities increased 46% in the United States during 2009–2016. This study identified circumstances under which the largest increases in deaths occurred during this period.MethodAnnual counts of U.S. pedestrian fatalities and crash involvements were extracted from the Fatality Analysis Reporting System and General Estimates System. Poisson regression examined if pedestrian fatalities by various roadway, environmental, personal, and vehicle factors changed significantly during 2009–2016. Linear regression examined changes over the study period in pedestrian deaths per 100 crash involvements and in horsepower per 1000 pounds of weight among passenger vehicles involved in fatal single-vehicle pedestrian crashesResultsPedestrian deaths per 100 crash involvements increased 29% from 2010, when they reached their lowest point, to 2015, the most recent year for which crash involvement data were available. The largest increases in pedestrian deaths during 2009–2016 occurred in urban areas (54% increase from 2009 to 2016), on arterials (67% increase), at nonintersections (50% increase), and in dark conditions (56% increase). The rise in the number of SUVs involved in fatal single-vehicle pedestrian crashes (82% increase) was larger than the increases in the number of cars, vans, pickups, or medium/heavy trucks involved in these crashes. The power of passenger vehicles involved in fatal single-vehicle pedestrian crashes increased over the study period, with larger increases in vehicle power among more powerful vehicles.ConclusionsEfforts to turn back the recent increase in pedestrian fatalities should focus on the conditions where the rise has been the greatest.Practical applicationsTransportation agencies can improve urban arterials by investing in proven countermeasures, such as road diets, median crossing islands, pedestrian hybrid beacons, and automated speed enforcement. Better road lighting and vehicle headlights could improve pedestrian visibility at night.  相似文献   

15.
IntroductionMany U.S. cities have adopted the Vision Zero strategy with the specific goal of eliminating traffic-related deaths and injuries. To achieve this ambitious goal, safety professionals have increasingly called for the development of a safe systems approach to traffic safety. This approach calls for examining the macrolevel risk factors that may lead road users to engage in errors that result in crashes. This study explores the relationship between built environment variables and crash frequency, paying specific attention to the environmental mediating factors, such as traffic exposure, traffic conflicts, and network-level speed characteristics. Methods: Three years (2011–2013) of crash data from Mecklenburg County, North Carolina, were used to model crash frequency on surface streets as a function of built environment variables at the census block group level. Separate models were developed for total and KAB crashes (i.e., crashes resulting in fatalities (K), incapacitating injuries (A), or non-incapacitating injuries (B)) using the conditional autoregressive modeling approach to account for unobserved heterogeneity and spatial autocorrelation present in data. Results: Built environment variables that are found to have positive associations with both total and KAB crash frequencies include population, vehicle miles traveled, big box stores, intersections, and bus stops. On the other hand, the number of total and KAB crashes tend to be lower in census block groups with a higher proportion of two-lane roads and a higher proportion of roads with posted speed limits of 35 mph or less. Conclusions: This study demonstrates the plausible mechanism of how the built environment influences traffic safety. The variables found to be significant are all policy-relevant variables that can be manipulated to improve traffic safety. Practical Applications: The study findings will shape transportation planning and policy level decisions in designing the built environment for safer travels.  相似文献   

16.
Introduction: One of the challenging tasks for drivers is the ability to change lanes around large commercial motor vehicles. Lane changing is often characterized by speed, and crashes that occur due to unsafe lane changes can have serious consequences. Considering the economic importance of commercial trucks, ensuring the safety, security, and resilience of freight transportation is of paramount concern to the United States Department of Transportation and other stakeholders. Method: In this study, a mixed (random parameters) logit model was developed to better understand the relationship between crash factors and associated injury severities of commercial vehicle crashes involving lane change on interstate highways. The study was based on 2009–2016 crash data from Alabama. Results: Preliminary data analysis showed that about 4% of the observed crashes were major injury crashes and drivers of commercial motor vehicles were at-fault in more than half of the crashes. Acknowledging potential crash data limitations, the model estimation results reveal that there is increased probability of major injury when lane change crashes occurred on dark unlit portions of interstates and involve older drivers, at-fault commercial vehicle drivers, and female drivers. The results further show that lane change crashes that occurred on interstates with higher number of travel lanes were less likely to have major injury outcomes. Practical Applications: These findings can help policy makers and state transportation agencies increase awareness on the hazards of changing lanes in the immediate vicinity and driving in the blind spots of large commercial motor vehicles. Additionally, law enforcement efforts may be intensified during times and locations of increased unsafe lane changing activities. These findings may also be useful in commercial vehicle driver training and driver licensing programs.  相似文献   

17.
IntroductionThe objective of this research is to investigate the effects of monthly weather conditions on traffic crash experience on freeways, considering the interactions between weather, traffic volumes, and roadway conditions. Methods: Data from the state of Connecticut from 2011to 2015 were used. Random parameters negative binomial models with first-order, autoregressive covariance were estimated for representative types of freeway crashes (front-to-rear, sideswipe-same-direction, and fixed-object), most severe crashes (i.e., fatal and injury crashes), and non-injury crashes (i.e., property-damage-only crashes). Results: Major findings are that variations in monthly traffic volumes, roadway geometry, and weather conditions explain much of the variations in monthly traffic crashes. Time effects exist in the panel monthly data for all types of crashes. Taking into account this effect improves model prediction results. When the raw weather measures are highly correlated, using dimension reduction techniques helps to extract more interpretable weather factors. By considering the interaction effects between roadway condition variables, additional findings were found. In general, lower temperature, more heavy fog days, decreased precipitation, lower wind speed, higher monthly traffic volumes, and narrower inside shoulder were found to be associated with higher monthly crashes. The effects of area type and outside shoulder width change dramatically as the number of through lanes changes. Practical applications: The findings of this research could help researchers and general readers gain a better understanding of the effects of monthly weather conditions and other roadway factors on freeway crashes and give engineers practical guidelines on improving freeway safety.  相似文献   

18.
Introduction: A large majority of pedestrian fatal crashes occurred during the nighttime. The focus of this research was to identify if the following pedestrian crossing treatments were more or less effective at night: pedestrian hybrid beacon (PHB), rectangular rapid flashing beacon (RRFB), or LED-embedded crossing warning sign (LED-Em). Method: For each treatment, two statistical evaluations were used on the staged pedestrian data: ANCOVA models that considered per site mean yield rates and logistic regression that considered the individual driver response to the crossing pedestrian. Results: For the PHB, essentially no difference was found between the very high daytime and nighttime driver yielding values. The research found RRFBs to be more effective at night, and the LED-Em to be more effective during the day. Using the results from the logistic regression evaluation, higher driver yielding was observed at LED-Em sites in the lower speed limit group (30 or 35 mph (48.3 or 56.3 kph), with 2 lanes (rather than 4 lanes), with narrow lanes of 10.5 or 11 ft (3.2 or 3.4 m) widths (rather than 11.5 or 12 ft (3.5 or 3.7 m) widths), and lower hourly volumes. The results from the ANCOVA model for LED-Ems also showed a statistically significant difference for yield lines (higher yielding when present). Conclusions: This analysis represents the only known study to date on the effectiveness of pedestrian crossing treatments at night. Practical Applications: This study provides additional support for the PHB as a treatment because the PHB was found to be highly effective during the nighttime as well as the daytime. The value of using advance yield lines was also demonstrated. The findings offer a caution regarding the use of the LED-Em treatment on higher speed, higher volume, or wider roads.  相似文献   

19.
Introduction: Speeding is a crucial risk factor for pedestrian safety because it shortens reaction time while increasing the impact force in collisions. Various types of traffic calming measures to prevent speeding have been devised. A speed hump—a raised bump installed in the pavement—has been widely used for this purpose. Method: To evaluate the effectiveness of speed humps, the speed profiles of vehicles passing speed humps were analyzed along with pedestrian crash records near speed humps. Results: The speed profiles showed that vehicles gradually diminished their speeds starting 30 m ahead of speed humps and, immediately after passing the humps, accelerated to regain their original speeds within a distance of 30 m. This speed reduction effect is substantial on both local and major roads: 18.4% and 24.0% reduction in speeds, respectively. The analysis of pedestrian crash records revealed that, inside the zones of speed reduction effect near speed humps (i.e., ±30 m from speed humps), fewer pedestrian crashes per roadway distance occurred and pedestrian injuries were less severe, compared with events outside the effect zones. This safety improvement was greater on major roads than local roads. Practical Applications: This work finds that the speed reductions that occurred near speed humps were gradual and influential ±30 m from their locations, suggesting that the hump installations should be close enough to the pedestrian crossings. It is noteworthy that, albeit that speed humps are more prevalent on local roads, the benefits of speed reduction effects from speed humps were more pronounced on major roads than on local roads. Therefore, speed humps on major roads can be considered a more effective measure for pedestrian safety.  相似文献   

20.
Objective: This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by focusing attention on the built environment and considering spatial correlation across crashes.

Method: Reports for 6,539 pedestrian crashes occurred in Denmark between 2006 and 2015 were merged with geographic information system resources containing detailed information about the built environment and exposure at the crash locations. A linearized spatial logit model estimated the probability of pedestrians sustaining a severe or fatal injury conditional on the occurrence of a crash with another road user.

Results: This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users and crashes with heavy vehicles and in roads with higher speed limits being related to the most severe outcomes. This study provides novel perspectives by showing positive spatial correlations of crashes with the same severity outcomes and emphasizing the role of the built environment in the proximity of the crash.

Conclusions: This study emphasizes the need for thinking about traffic calming measures, illumination solutions, road maintenance programs, and speed limit reductions. Moreover, this study emphasizes the role of the built environment, because shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity. Often, these areas have in common a larger pedestrian mass that is more likely to make other road users more aware and attentive, whereas the same does not seem to apply to areas with lower pedestrian density.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号