首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了研究金属离子对双氧水在绝热条件下分解特性的影响,利用泄放尺寸设计装置VSP2模拟双氧水及分别掺杂0.01%质量分数Fe~(2+)、Fe~(3+)、Gu~(2+)的双氧水在绝热条件下的反应失控过程,得到绝热分解过程的热力学和动力学参数,依此推算出该4种试样25 kg包装下的自加速分解温度SADT,以及绝热条件下到达最大反应速率的时间TMRad。结果表明,Fe~(2+)、Fe~(3+)、Gu~(2+)使双氧水的起始分解温度T0、SADT、TMRad均降低,提高了双氧水的热危险性。在Fe~(3+)的作用下,双氧水在常温下就发生缓慢分解,发生失控的可能性最大;掺杂了Gu~(2+)的双氧水分解反应最剧烈,热失控严重度最高。  相似文献   

2.
为了研究十六烷值改进剂—硝酸异辛酯(EHN)的热稳定性与热危险性,采用C600微型量热仪测试硝酸异辛酯的热分解特性.利用热分析技术考察温升速率对EHN热分解特性的影响,并利用活化能、TMRad(在绝热条件下最大反应速率到达时间)和自加速分解速率(SADT)方法评价此改进剂的危险性.结果表明,EHN发生分解反应的起始放热温度和最大放热温度均随着温升速率的增加而增大,且四种温升速率的反应机理是一致的.计算得到EHN热分解活化能在143.6-213.6kJ/mol之间.通过绝热条件下TMRad评价得出EHN在常温常压条件下不易发生危险失控,EHN自加速分解温度为98℃>75℃,即在常温条件下储运是安全的,为储运硝酸异辛酯提供有力的数据支持.  相似文献   

3.
采用绝热加速量热仪(ARC)对分析纯过硫酸铵、含10%氯化钠杂质的过硫酸铵以及含10%二氧化硅杂质的过硫酸铵进行热分析实验,得到了实验过程中温度、温升速率和压力等数据,计算了3组样品的反应动力学参数,引入热惰性因子对实验数据进行修正,得到了3组样品在严格绝热条件下的热危险性参数,分析了3组样品的反应过程和热危险性。通过Semenov理论计算了3组样品的自加速分解温度(SADT)。结果表明,过硫酸铵加入氯化钠或二氧化硅杂质后,热危险性增大,自加速分解温度降低,更容易发生反应且反应更剧烈。  相似文献   

4.
过氧化苯甲酰合成工艺热危险性分析   总被引:1,自引:0,他引:1  
采用RC1e反应量热仪对过氧化苯甲酰(BPO)合成工艺危险性进行研究,测试不同Na OH溶液初始浓度(1.96 mol/L、3.93 mol/L、7.14 mol/L)下反应的放热历程,获得BPO合成反应过程中的热危险性参数,并采用PHI-TECⅡ绝热加速量热仪对产物进行热稳定性分析,最后评估该反应热风险。结果表明,Na OH浓度为7.14 mol/L时,反应初期放热速率慢,热累积度大,后期反应剧烈,绝热温升(ΔTad)及热失控时工艺反应达到的最高温度(MTSR)最大。热稳定性试验表明,合成的粗产物BPO初始分解温度、活化能、指前因子、最大放热速率到达时间为24 h时的对应温度(TD24)均低于纯BPO。利用合成粗产物BPO的TD24对反应进行危险度评估,该工艺热危险性等级均为5级,工艺危险性大。  相似文献   

5.
苯和甲苯硝化及磺化反应热危险性分级研究   总被引:1,自引:1,他引:0  
首先介绍了化工工艺热安全性的内涵,并从反应过程热危险性分析的方法学出发,介绍间隙、半间歇化学反应工艺热危险性分级研究的总体思路及方法。然后,围绕甲苯和苯的硝化、磺化反应,用全自动反应量热仪(RC1e)和加速度量热仪(ARC)测定其反应过程的绝热温升(△Tad)、目标反应所能达到的最高温度(TM)、分解反应最大速率到达时间(θD)等参数。运用风险评价指数矩阵法(方法1)和基于失控过程温度参数的热危险评估法(方法2)分别对其硝化和磺化反应过程的热危险性进行了分级评估。结果表明,这两种方法具有良好的一致性;给定工艺条件下甲苯和苯的一段硝化反应过程的热危险度等级较低;而磺化反应的热危险较高。尽管这两种方法还有一定的局限性,但对于间歇、半间歇合成工艺的本质安全化设计、工艺热危险性的评估具有重要的参考价值和实用意义。  相似文献   

6.
为研究1,1-二叔戊基过氧环己烷(DTAC)的热危险性,用差式扫描量热(DSC)仪进行试验,获得DTAC的热分解特性数据;用Friedman法确定热分解动力学参数;用绝热加速量热(ARC)仪进行试验,研究DTAC在绝热条件下的热分解行为;根据动力学分析结果研究不同温度下DTAC热分解反应的最大反应速率到达时间(TMR_(ad))随温度的变化关系,以及自加速分解温度(SADT)与传热系数的关系。结果表明:25 kg高密度聚乙烯材料(HDPE)包装的DTAC溶液的SADT为57. 3℃,运输DTAC应选用传热系数大的包装材料,并注意其温度。  相似文献   

7.
为研究固态间氯过氧化苯甲酸(m-CPBA)在非等温和绝热条件下的热分解过程及其危险性,分别采用差示扫描量热仪(DSC)和绝热加速量热仪(ARC)试验研究m-CPBA的热分解特征。通过热重分析仪(TG)测量m-CPBA的初始分解温度,用Kissinger法、Ozawa法和速率常数法计算活化能、指前因子和反应级数等热分解反应动力学参数,并根据绝热试验结果推算最大反应速率到达时间(TMR_(ad))。结果表明:m-CPBA的初始分解温度为94℃,且在熔融相变的同时发生热分解放热反应;其绝热温升为41.69℃,TMRad在8和24 h所对应的绝热温度分别为54.7℃和50.9℃;因此,m-CPBA在贮存、运输和使用过程中需要严格控制温度。  相似文献   

8.
针对化学品反应危险性的评价,介绍利用最大分解热,反应放热功率,绝热反应参数等方法对化学品反应危险性进行分级的几种方法及各自特点。通过分析整合不同分级方法,提出一种基于实测反应放热参数的分级方法,此方法以初始放热温度和反应热组成指标体系,同时配合燃爆曲线实现对化学品反应危险性的分级,得到的结果对于化学品的安全评价有较强的参考价值。考察了6种有机过氧化物的放热性质,诠释了有机过氧化物的反应危险性,应用所提出的反应危险性分级方法对其进行分级,并对分级方法进行了验证。该方法结合了实验结果和多种分级方法的优点,使化学品反应危险性分级方法具有更强的实用性。  相似文献   

9.
自反应性化学物质的热危险性评价方法   总被引:18,自引:6,他引:12  
笔者进行的研究工作 ,给出了利用C80微量量热仪所测得的自反应性化学物质的热流速曲线 ,从而求解该物质的化学反应动力学参数 ,以及在Semenov模型下求解其自加速分解温度SADT(Self AcceleratingDecompositionTemperature)的方法 ,并将一些有机过氧化物、氧化剂和可燃剂的混合物的自加速分解温度的推算结果与实测值进行了比较。实验证明 ,该推算方法结论准确 ,是一种安全、简便、实用的反应性化学物质热危险性的评价方法  相似文献   

10.
在纯过氧化环己酮(CYHPO)储运中常添加减敏剂,以降低其热危险性。为了对比评价减敏性能,采用绝热加速量热仪测试了纯CYHPO及加入等质量邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二辛酯(DOP)、正己酸(HAA)和环己醇(CCH)后的热危险参数,并计算了上述5种样品的反应动力学常数和绝热校正数据,建立了包括初始放热温度T0和绝热反应加速度SARC的减敏效果判据,对4种减敏剂的热危险性减敏效果进行了评价。结果表明,DOP对CYHPO热危险性的减敏效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号