首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了解决醋酸乙烯聚合反应失控所引起的超压问题,通过VSP2绝热量热仪研究了醋酸乙烯聚合反应的失控特性,并通过Leung's法对某醋酸乙烯聚合反应器的安全泄放面积进行了计算;然后,在其他条件不变的情况下,研究引发剂质量分数对失控特性和泄放面积的影响,结果表明,引发剂质量分数对反应总放热量的影响不大,体系绝热温升为105~115℃;但引发剂质量分数越大,失控反应的最大温升速率和最大压升速率越大。这是因为引发剂质量分数越大,在相同泄放压力和最大累积压力下,单位质量反应物的放热速率就越大,也就需要更大的泄放面积;最后,引入无量纲数W~*、G~*和A~*,拟合出它们与引发剂质量分数X*的关系式,结果表明,在研究范围内所需安全泄放面积随引发剂质量分数线性增大。  相似文献   

2.
反应热失控是引起设备超压的重要因素之一,可靠的安全泄放装置是防止设备发生超压破坏的最有效方法。为了对双氧水储罐的泄放面积进行设计,利用泄放口尺寸测试装置VSP2(Vent Sizing Package 2)对封闭环境下质量分数为20%的H_2O_2进行测试,得到反应失控过程中的热力学参数,并依此推算出不同泄放压力下的安全泄放面积A。结果表明,在绝热条件下,20%H_2O_2的起始分解温度为70℃,比反应热为435.49 k J/kg,最大压力为6.26 MPa。双氧水反应体系的泄放类型为缓和混合体系,采用DIERS设计方法和OMEGA方法计算不同泄放压力下的泄放面积。安全泄放面积随泄放压力增加而增大。VSP2具有很低的热惯量,可为失控反应安全泄放设计提供基础数据,以提高设计的可靠性。  相似文献   

3.
为了保证50%双氧水热失控时在储罐中的安全泄放,利用VSP2(Vent Sizing Package 2)模拟了50%双氧水在带放空测试池中绝热条件下的热失控过程,得到了过程的温度、压力、温升速率变化情况,利用DIERS通用方法计算了50%双氧水安全泄放所需的放空口面积,得到了放空口面积的计算公式.结果表明,储罐设置足够的放空口面积可保证双氧水的安全泄放,在充装系数为0.8时所需的放空面积为0.005 2 V/m.  相似文献   

4.
为探讨丁二烯的聚合放热危险特性,并为某化工厂丁二烯储罐安全泄放设计提供依据,利用新型绝热量热仪VSP2,对丁二烯的聚合放热过程及加有阻聚剂对叔丁基邻苯二酚(TBC)的丁二烯的聚合放热过程进行试验研究,得到温度、压力随时间变化的数据。用Leung法和平衡速率模型(ERM),分别计算得到该厂丁二烯储罐的安全泄放流量和泄放能力,并最终确定其安全泄放面积。结果表明:丁二烯聚合反应的起始放热温度为70.26℃,反应失控后体系的最高温度和最高压力分别达到194.07℃和1.06 MPa,具有较大的危险性;阻聚剂TBC能有效阻止丁二烯的聚合;丁二烯聚合反应的泄放类型为蒸气型泄放,计算得到该化工厂丁二烯储罐的安全泄放面积为0.06 m2。  相似文献   

5.
为研究过氧丙酸分解反应的失控泄放特性,利用泄放模式实验装置对过氧丙酸在不同泄放口径和泄放压力下的顶部和底部的泄放过程进行了试验模拟,得到了过氧丙酸的失控特性参数和不同条件下的泄放特征。结果表明:过氧丙酸失控反应泄放易出现二次峰值现象,初次峰值为气相泄放,二次峰值为气液两相泄放;二次峰值的出现取决于泄放口径及泄放时的物料温度,与泄放压力无关;恒压泄放容易出现非平衡泄放,导致较高最大累积压力和较高的釜内物料温度;底部泄放能够使釜内物料快速排空。  相似文献   

6.
Fe3+掺杂对双氧水热稳定性的影响   总被引:2,自引:0,他引:2  
为了定量考察Fe3+掺杂对双氧水热稳定性的影响,利用泄放尺寸实验仪(VSP2)研究了无Fe3+及Fe3+质量分数为0.003%、0.01%、0.02%时的27.5%双氧水(质量分数)热分解特性,得到了这4种样品绝热自分解过程的温度及压力数据,计算得到初始温度为40 ℃时不同Fe3+质量分数的双氧水在绝热条件下到达最大反应速率所需时间(TMRad).结果表明,为保证双氧水在一般环境条件下安全稳定存储,需要控制双氧水中Fe3+的质量分数低于9.2×10-6.  相似文献   

7.
为了系统研究环氧乙烷水溶液失控反应热动力学参数的变化规律,采用等温扫描量热仪C600和绝热量热仪VSP-2分别对环氧乙烷水溶液进行了量热试验研究,得到了纯环氧乙烷的热稳定性数据,以及不同质量分数环氧乙烷水溶液的起始放热温度、最高放热温度和压力、放热量、绝热温升及失控反应过程的温度、压力变化等。结果表明,纯环氧乙烷发生失控反应的起始温度接近360℃,其放热量高达2 600 k J/kg。水加入环氧乙烷能够显著降低体系的起始放热温度至200℃以下。随环氧乙烷水溶液质量分数升高,失控反应致灾后果的严重程度明显提高。最高温度和压力、温升和压升速率、放热量及绝热温升随环氧乙烷质量分数升高而增大,而达到最大反应速率的时间减小。  相似文献   

8.
为了研究金属离子对双氧水在绝热条件下分解特性的影响,利用泄放尺寸设计装置VSP2模拟双氧水及分别掺杂0.01%质量分数Fe~(2+)、Fe~(3+)、Gu~(2+)的双氧水在绝热条件下的反应失控过程,得到绝热分解过程的热力学和动力学参数,依此推算出该4种试样25 kg包装下的自加速分解温度SADT,以及绝热条件下到达最大反应速率的时间TMRad。结果表明,Fe~(2+)、Fe~(3+)、Gu~(2+)使双氧水的起始分解温度T0、SADT、TMRad均降低,提高了双氧水的热危险性。在Fe~(3+)的作用下,双氧水在常温下就发生缓慢分解,发生失控的可能性最大;掺杂了Gu~(2+)的双氧水分解反应最剧烈,热失控严重度最高。  相似文献   

9.
为了研究十六烷值改进剂—硝酸异辛酯(EHN)的热稳定性与热危险性,采用C600微型量热仪测试硝酸异辛酯的热分解特性.利用热分析技术考察温升速率对EHN热分解特性的影响,并利用活化能、TMRad(在绝热条件下最大反应速率到达时间)和自加速分解速率(SADT)方法评价此改进剂的危险性.结果表明,EHN发生分解反应的起始放热温度和最大放热温度均随着温升速率的增加而增大,且四种温升速率的反应机理是一致的.计算得到EHN热分解活化能在143.6-213.6kJ/mol之间.通过绝热条件下TMRad评价得出EHN在常温常压条件下不易发生危险失控,EHN自加速分解温度为98℃>75℃,即在常温条件下储运是安全的,为储运硝酸异辛酯提供有力的数据支持.  相似文献   

10.
为研究二叔丁基过氧化物(DTBP)热失控危险性,利用C600微量量热仪对DTBP热分解动力学进行试验研究,测定DTBP在不同升温速率下的起始放热温度和分解热,分别用非等转化率法和等转化率法得到DTBP热分解反应的动力学参数。用非等转化率法确定反应的最佳反应级数为1,相应的活化能分别为137.75、132.60、128.61和122.93 kJ/mol,指前因子分别为8.82×1012、6.69×1012、2.06×1012和3.89×10111/s。用等转化率法确定的活化能范围为102~138 kJ/mol,并拟合出活化能与转化率的关系曲线。结合计算出的动力学参数,通过对DTBP分解机理的分析,可以推断其具有热失控危险性。  相似文献   

11.
采用反应量热仪(RC1e)、差示扫描量热仪(DSC)和绝热加速量热仪(ARC)对环己酮过氧化反应过程的热失控危险性进行了研究,利用冷却失效情形法对该工艺进行危险性分级。结果表明:温度的升高使环己酮过氧化反应速率加快,体系比热容增加,温度升高也使产物各种中间体及副反应活跃程度增加,提高搅拌速度也能促进环己酮氧化,而延长加料时间可以将反应热量较好地移出,但同时降低反应速率,使过氧化环己酮得率降低。依据风险评价指数矩阵法和失控情景分析法,得到环己酮半间歇过氧化反应的热失控危险程度级别为5级,而降低环己酮的加入量,危险程度等级为2级。  相似文献   

12.
为研究加氢站用高压储氢容器在火灾下的安全性能,采用计算流体力学(CFD)方法对45 MPa高压储氢瓶式容器火烧试验过程进行模拟研究,结合气瓶火烧试验,分析高压储氢容器火灾下的热响应过程,研究不同因素对储氢容器压力泄放装置动作时间的影响。结果表明:613 s以内试验压力与模拟数据的最大相对误差为3.9%,模型误差在可接受范围;不同充装介质对安全泄放装置动作时间影响不大;不同充装压力对容器内介质压升速率影响较大,充装水平较高时压力泄放装置更快动作,较低的充装压力下容器内介质温升较快;不同环境温度对介质温升影响较小。  相似文献   

13.
为分析过氧乙酸叔丁酯(TBPA)的热解危险性,采用差示扫描量热仪(DSC)、绝热量热仪(Phi-TEC II)和气质联用仪(GC/MS),试验研究TBPA的热解特性以及酸碱与TBPA的相容性,分析TBPA热解产物,并推测可能的热解路径;根据Starink法和速率常数法确定热解反应动力学参数,推算绝热条件下最大反应速率到达时间(TMRad)为24 h时所对应的温度θ_(d24);结果显示,绝热条件下TBPA起始放热温度为83.0℃,绝热温升为214.5℃,θ_(d24)为63.46℃。研究表明:TBPA混合H_2SO_4溶液后,混合物热解起始放热温度降低,反应更为剧烈,而NaOH溶液对TBPA的热解危险程度影响不大,必须严格控制生产工艺温度及储运温度,并应在合成工艺中优先选择NaOH作为反应物,尤其需要注意酸性物质对TBPA热解的影响。  相似文献   

14.
使用加速量热仪(ARC)研究硝酸异辛酯(EHN)的热分解,得到热分解温度随时间的变化曲线,自放热速率、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线。分析在绝热条件下硝酸异辛酯的热分解反应动力学和热分解过程,计算表观活化能、指前因子和反应热等参数。根据绝热热分解的起始温度和反应热数据,给出硝酸异辛酯在反应危险度等级中的分类,并计算在75℃时的反应风险指数。  相似文献   

15.
为防止反应失控造成爆炸事故,减少事故损失,在介绍模拟反应失控的实验装置ARC、VSP以及RSST等的基础上,针对不同的紧急泄放类型,如气相系统、蒸气系统和混合系统的紧急泄放研究进展,进行了分析论述,旨在发现解决反应失控紧急泄放问题的更好方法,从而为进一步研究反应失控的紧急泄放问题打下基础.  相似文献   

16.
为实现对醋酸乙烯(VAC)聚合反应热失控行为的风险评估及紧急抑制,采用VSP2绝热量热仪对醋酸乙烯聚合反应体系在不同危险场景条件下的热失控过程和失控抑制进行试验模拟。依据苏黎世危险性分析法(ZHA)中的失控反应严重度评估判据,评估醋酸乙烯聚合反应的热失控风险程度,提出紧急情况下抑制剂的加入时间及加入量。结果表明,醋酸乙烯聚合反应失控后绝热温升(ΔT_(ad))超过100℃,最大反应速率到达时间(TMRad)约为10 min,其热失控风险程度仅次于不可接受水平。聚合体系温度不高于73℃时,通过加入不低于参与聚合反应的醋酸乙烯质量20%的常温溶剂,可有效阻止失控反应发生。  相似文献   

17.
利用全自动反应量热仪和绝热加速量热仪等相关实验仪器检测出TAIC(三烯丙基异氰尿酸酯)合成反应的反应热、比热容及热稳定性等数据,依据绝热温升、工艺温度、技术最高温度、最大反应速率到达时间及失控体系可能达到的最高温度这5个温度参数按照评估标准从分解热、严重度、可能性、矩阵、工艺危险度这5个方面分别进行评估。通过对热参数及实验过程进行分析提出降低工艺危险等级的工艺优化方法。根据最终评估结果对TAIC生产装置的安全性进行评价,提出相应的整改措施及建议。  相似文献   

18.
为研究固态间氯过氧化苯甲酸(m-CPBA)在非等温和绝热条件下的热分解过程及其危险性,分别采用差示扫描量热仪(DSC)和绝热加速量热仪(ARC)试验研究m-CPBA的热分解特征。通过热重分析仪(TG)测量m-CPBA的初始分解温度,用Kissinger法、Ozawa法和速率常数法计算活化能、指前因子和反应级数等热分解反应动力学参数,并根据绝热试验结果推算最大反应速率到达时间(TMR_(ad))。结果表明:m-CPBA的初始分解温度为94℃,且在熔融相变的同时发生热分解放热反应;其绝热温升为41.69℃,TMRad在8和24 h所对应的绝热温度分别为54.7℃和50.9℃;因此,m-CPBA在贮存、运输和使用过程中需要严格控制温度。  相似文献   

19.
过硫酸铵的热稳定性研究   总被引:1,自引:1,他引:0  
采用绝热加速量热仪(Accelerating Rate Calorimeter,ARC)对正常和潮湿条件下的过硫酸铵进行对比热容分析试验,得到了不同条件下过硫酸铵样品的热分解温度和压力随时间的变化曲线及压力和温升速率随温度的变化曲线.分析了过硫酸铵的热分解过程,用速率常数法计算了表观活化能Ea和指前因子A,得到了样品在最危险状态即绝热状态下的初始放热温度、初始温升速率、最大温升速率、自反应放热最高温度、绝热温升等反映其热稳定性的参数.结果表明,在绝热环境中,潮湿条件下的过硫酸铵比正常条件下更具有热危险性,更易发生自反应放热分解,且过程更加剧烈.过硫酸铵在储存过程中若不慎与水或潮湿空气接触,应尽量进行通风冷却和干燥处理,防止发生自分解放热进而引发火灾.  相似文献   

20.
针对异丙醇与丙酸酐酯化合成丙酸异丙酯工艺的反应失控危险性,利用泄放尺寸实验仪(VSP2)研究了其反应的放热特性,选择自催化模式模拟得到了反应动力学参数,并与实验数据进行了对比验证;利用得到动力学模型,模拟了该工艺在半间歇模式、反应温度为70℃时,中试规模(> 100L)条件下的反应特点,分析了反应失控的危险性,并针对加料程序进行了优化设计,得到最佳控制方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号