首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
赣龙铁路下穿京九铁路时采用地道桥框架结构 ,施工采用顶推法 ;并采用钢便梁和挖孔桩加固以保证京九铁路的行车安全。由于运营的需要 ,将铁路行车限速由铁道部规定的 4 5km/h提高到客车 6 0km/h、货车4 5km/h ,为检验行车安全性和货车限速提高到 6 0km/h的可能性 ,南昌铁路局组织了试验列车通过便梁的试验 ,主要对轨道和便梁的动态安全性进行了测试 ;并通过对试验结果的分析和评估 ,证明了提高限速后行车的安全性 ,突破了铁道部限速规定 4 5km/h以内的限制 ,对既有线铁路施工时提高行车速度有重要意义。测试期间发现的施工便梁架设过程中存在的问题 ,对类似项目施工有一定的借鉴作用。  相似文献   

2.
乡村振兴战略下的穿村镇公路事故治理是重大现实问题,而穿村镇公路交叉口速度特性分析与行车安全评价已经成为迫切的理论需求。选择云南省2个典型穿村镇公路交叉口为实例,采集无人机视频数据以分析穿村镇公路交叉口的车辆速度变化规律;构建危险性系数模型与Vague复合物元行车安全等级判定模型,评估穿村镇公路交叉口行车安全水平,并通过实例交叉口进行验证。结果表明:穿村镇公路交叉口车辆运行速度总体呈现“减速—加速”模式,速度最低点位于交叉口中心附近;路况复杂的多路交叉口速度分布于[40, 65] km/h,波动幅度相对较小;相较于无路侧干扰的行驶场景,避让场景下交叉口车速离散度更大,车速差最大值为49.78 km/h。评价案例交叉口的行车安全性,发现车辆驶入时距交叉口中心越近,危险性系数越大,驶出时则反之;两个案例交叉口的危险性系数最大值均位于交叉口中心,该位置加速度变化最快,行车安全性最低;十字交叉口行车安全性更差,易发生交通事故,多路交叉口的行车安全性良好。研究成果可为穿村镇公路事故治理提供理论依据。  相似文献   

3.
为提高高速公路中长隧道路段运营安全水平,促使驾驶人主动降低行车速度至安全范围,对高速公路中长隧道出入口段视错觉减速标线设置参数开展研究。通过实际道路试验,采集并分析中长隧道出入口段行车速度特性及视觉特性;依据驾驶人瞳孔面积变化速率与视觉障碍的表征关系,得到驶入及驶出隧道时基于视觉感受最佳的期望车速值;分别建立隧道入口段顺鱼刺形减速标线设置参数模型和隧道出口段梳齿形减速标线设置参数模型,选取典型初始速度及最佳期望车速检验模型效果。研究结果表明,驶入和驶出隧道时,最佳期望车速分别为50 km/h和60 km/h;基于模型计算,获得隧道入口段3种鱼刺形减速标线设置参数和出口段1种梳齿型减速标线设置参数。  相似文献   

4.
为探究安全变道概率条件下高速公路立交最小净距,将相邻立交净间距分为向内侧变道段、标志识别段和向外侧变道段3部分。结合动力学和速度一致性原理,分析安全变道时的临界车头间距;运用概率论和交通流理论研究车辆变道概率组合特性。综合考虑车道数、服务交通量、设计速度和限制速度等条件,建立高速公路立交净距与安全变道概率关系模型。研究表明,安全变道概率阈值为0.95时,一级服务水平下不同车道数和设计速度的高速公路立交最小安全净距分别为:1 800 m(2,3车道,100 km/h)、2 200 m(2,3车道,120 km/h)、2 350 m(4车道,120 km/h),安全变道概率随立交净距的增大而呈阶梯型增长。  相似文献   

5.
以南水北调工程盾构施工穿越北京地铁13号线清河桥工程为背景,采用有限元分析方法,针对不同施工加固措施及行车速度条件下所引起的桥面竖向变形、桥墩竖向变形和地表沉降等问题进行了研究。总结了预加固旋喷桩配比参数、注浆配比参数及行车速度等因素对各结构变形的影响程度。结果表明:水灰比为1.00时的旋喷桩,既能控制结构变形,又具有较高的经济和施工效益;水泥浆与水玻璃浆之比为1.0∶1.0时的注浆参数最优;行车速度控制在50 km/h以下时,能较好地控制结构变形的发展。最后通过对施工过程中各结构的变形进行监测,验证了优化结果的合理性。  相似文献   

6.
为了克服行车途中相机抖动对车速测量的影响,利用行车视频消失点特性和逆透视变换特征,提出一种通用车速测量方法。首先通过检测车道线来识别获取消失点位置和车道斜率信息;其次建立相机三参数模型,并利用透视成像原理,推导出俯仰角、偏航角以及高度的计算公式;然后对逆透视变换后的正投影图像进行特征运动分析,获取自车及目标车辆速度;最后分别在自车车速为20、25、30、35、40、50 km/h以及前方目标车辆车速为10、20、30 km/h的情况下进行实车试验。结果表明:自车车速的平均误差不超过5%,前车车速的平均误差不超过7%,能够达到交通事故车速测量的要求。  相似文献   

7.
正北京市地铁运营三分公司列车驾驶员廖明,创下了安全行驶里程100万km的世界纪录,他是如何做到的呢?2016年3月,北京市地铁运营三分公司列车驾驶员廖明,创下了安全行驶里程100万km的世界纪录,相当于绕地球赤道25圈。自1988年5月24日廖明第一次开始独立驾驶列车到现在,已手动驾驶安全行车超过2万5 000 h。而地铁安全行车标准十分严苛,达到这一标准意味着在廖师傅驾驶列车的近31年中,从未出现过哪怕像"车门未关严列车启动""晚点五分钟以上""红灯动车"这样的小事故。因  相似文献   

8.
为提高露天煤矿经济效益,优化露天矿山端帮靠帮开采道路宽度,以哈尔乌素露天煤矿开采现状图为依据,提出端帮靠帮开采方案并进行边坡稳定性模拟分析;在方案边坡稳定的前提下,根据现场实际道路参数设置斜坡道坡度,使用Vissim软件模拟靠帮后的端帮车流量密度及行车平均速度以验证方案可行性,再进行经济效益分析。研究结果表明:在采用靠帮开采方案后,不仅可以保证边坡安全,还可以将车流量密度降低11.02辆/km,行车平均速度提高10.2 km/h,显著提升运输效率的同时实现靠帮开采,该方案的年经济效益为1.538亿元。  相似文献   

9.
考虑到我国公路路线设计规范中停车视距计算未涉及弯道参数及路面凝冰引起的路面摩阻系数降低等严重危害车辆行驶安全的因素,以AASHTO模型为基础,通过分析弯道路段车辆行驶时的受力、路面摩阻系数、超高、圆曲线半径等因素推导了凝冰路面弯道路段停车视距计算模型,得出了最不利情况下凝冰路面弯道路段停车视距参考值。当路面发生凝冰现象时,若车辆以交通安全法规规定的冰雪路面最高车速30 km/h行驶,通过对比该行驶速度下凝冰路面弯道路段停车视距与我国规范规定的停车视距可知,没有发挥道路的最大通行能力。以现有道路设计采用的停车视距反算出在役路面发生凝冰现象时的安全行车控制速度,为凝冰路面弯道路段车辆安全行驶控制提供参考。  相似文献   

10.
采用心理物理试验分析公路隧道内部视觉环境对驾驶员行车安全的影响,将E-prime 2.0软件与仿真驾驶模拟器相结合,对驾驶员在隧道内长时间行车中的速度判断准确率及反应时间两个指标进行分析,提出了利用标志标线构建公路隧道内韵律型标线系统的改善措施,以改善隧道内视觉环境,并利用数理统计方法及Logistics拟合分析对设计方案进行评价。结果表明:1)公路隧道内韵律型标线系统能提升隧道内驾驶员的速度判断准确率3.33%~11.66%;2)普通公路隧道场景中,被试者反应时间与隧道内行车时间存在显著关系,公路隧道内韵律型标线系统的场景中,反应时间与隧道内的行车时间没有显著关系,能有效缓解视觉疲劳现象;3)被试者反应时间的增加同时受隧道内视觉环境与行车时间的影响。公路隧道内韵律型标线系统能有效提高驾驶员的反应时间,适用于行驶速度为80 km/h、大于1 333 m的隧道。  相似文献   

11.
Abstract

Objective: Impact speed is one of the most important factors explaining the severity of injuries to cyclists when they collide with passenger cars. To reduce injury severity (especially for vulnerable road users), since 2008, Swedish municipalities have the authority to lower the speed limit to 30 or 40?km/h in urban areas as appropriate. The aim of this study was to evaluate how this speed limit reduction has influenced the injury severity for cyclists in this type of collision.

Method: Data from 1,953 collisions between bicycles and passenger cars were collected using information from third-party-liability insurance claims from 2005 to 2017. The change of speed limit distribution, influenced by the reduction of speed limits in urban areas, where car-to-cyclist collisions occurred was studied. Following that, injury severity for cyclists was evaluated regarding collisions occurring in areas with different speed limits.

Results: The results show that, in collisions with cars, cyclists have a significantly lower risk of a moderate-to-fatal (MAIS 2+) injury when the speed limit is 30–40?km/h compared to 50–60?km/h. During the last decade, while the speed-limit has been lowered on many road-sections in urban areas from 50–60?km/h to 30–40?km/h the risk of a cyclist getting a MAIS 2+ injury decreased by 25%. In 2005 to 2011, 16% of the crashes happened on a road with a speed limit of 30–40?km/h; in 2016–2017, this percentage had increased to approximately 50%. Thus, in recent years more crashes occurred on roads with lower speed limits, and in these crashes, there was a lower risk of severe injuries to cyclists. Unfortunately, it was not possible to evaluate the risk of a crash for specific speed limits; since one limitation of this study was the lack of exposure data, nor do we know the impact speed or the actual speed of the vehicles.

Conclusions: This study is an important follow-up on the implementation of measures that can influence bicycle safety. The insurance data used, made it possible to quantify a positive effect on injury severity for cyclists in passenger car-to-cyclist collisions when the speed limit was reduced in urban areas. Insurance claims cover collisions of all crash severity, so they include data covering all types of injuries—not just the most severe/fatal ones. This aspect is especially important in the speed intervals evaluated here, since moderate (MAIS 2) injuries are very frequent in lower-speed crashes and even these injuries can result in long-term consequences.  相似文献   

12.
Objective: The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data.

Method: Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels.

Results: A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes.

Conclusions: The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design.  相似文献   


13.
为研究城市间运输货车行驶工况特性与典型工况构建方法。运用车载数据采集系统采集了在珠三角区域城市间运输的货运车辆行驶车速等瞬态数据。基于13个工况特征参数解析工况特性,运用运动学片段理论将工况速度数据分成284个工况片,基于主成分分析和聚类分析法将工况片分成5类,选出12片代表工况片,按工况片平均速度从小到大的顺序排列,再将工况时长等比例压缩至1 800 s后最终构建出典型行驶工况。构建工况与实测样本的各项特征参数符合度大于80%,结果表明提出的典型工况构建方法可行,构建工况符合城市间货运车辆实际运行特性。构建工况的最大车速为80 km/h,主要分布在60~80 km/h,C-WTVC工况在0~90 km/h较均匀分布,平均车速为41.0 km/h,较构建工况低15.8%。基于构建工况进行重型货车排放性能仿真测算,得出CO_(2e)排放因子为764.81 g/km,较C-WTVC工况测算值低10.97%,表明运行工况不同导致碳排放测算值有较大差异。  相似文献   

14.
Objective: The primary objective of this study was to evaluate the effects of different speed-control measures on the safety of unsignalized midblock street crossings.

Methods: In China, it is quite difficult to obtain traffic crash and conflict data for pedestrians using such crossings, mainly due to the lack of traffic data management and organizational issues. In light of this, the proposed method did not rely on such data, but considered vehicle speed, which is a leading contributing factor of pedestrian safety at mid blocks. To evaluate the speed reduction effects at different locations, the research team utilized the following methods in this study: (1) testing speed differences—on the basis of the collected data, statistical analysis is conducted to test the speed differences between upstream and crosswalk, upstream and downstream, and downstream and crosswalk; and (2) mean distribution deviation—this value is calculated by taking the difference in cumulative speed distributions for the two different samples just mentioned. In order to better understand the variation of speed reduction effects at different distances from speed-control facilities, data were collected from six types of speed-control measures with a visual range of 60 m.

Results: The results showed that speed humps, transverse rumble strips, and speed bumps were effective in reducing vehicle speeds. Among them speed humps performed the best, with reductions of 21.1% and 20.0% from upstream location (25.01 km/h) and downstream location (24.66 km/h) to pedestrian crosswalk (19.73 km/h), respectively. By contrast, the speed reduction effects were minimal for stop and yield signs, flashing yellow lights, and crossings without treatment.

Conclusions: Consequently, in order to reduce vehicle speeds and improve pedestrian safety at mid blocks, several speed-control measures such as speed humps, speed bumps, and transverse rumble strips are recommended to be deployed in the vicinity of pedestrian crosswalks.  相似文献   

15.
为研究适用于典型大型货物运输车辆的道路纵坡及最大坡长参数,构建大型货物运输车辆动力学仿真模型,并考虑车辆冲坡行为及公路线形设计习惯,建立包含直线提速蓄能路段、以最小长度控制的竖曲线路段以及不同坡度纵坡路段组成的试验道路,对比分析设计速度120 km/h、纵坡坡度1.0%~3.0%,设计速度100 km/h、纵坡坡度1.0%~4.0%以及设计速度80 km/h、纵坡坡度1.0%~5.0%3种不同道路条件下,大型货物运输车辆在试验路段的运行速度变化规律。依据速度一致性原则,以大型货物运输车辆的运行速度衰减度作为控制指标,得到各设计速度道路不同纵坡路段对应的最大纵坡长度。结果表明:在保证纵坡路段满足最小长度要求的条件下,通过减小纵坡路段长度,增大竖曲线长度,可提高大型货物运输车辆纵坡路段通过性。  相似文献   

16.
Abstract

Objective: In Sweden, cyclists, pedestrians, and moped riders share the space on combined pedestrian and cycle paths, and their speeds may differ greatly. Both actual speed and speed differences can potentially influence the number of accidents on the shared paths. As a starting point, this article studies the speed component and how cyclists’ speed varies at pedestrian and cycle paths depending on the day, week, and year; road user composition; and road design.

Methods: Three data sources were used: Existing measurements of cycle speed and flow in 3 different Swedish municipalities, Eskilstuna (1 site, January–December 2015), Linköping (6 sites, 4?weeks in September–October 2015), and Stockholm (10 sites, 1–5?days in August–September 2015); complementary measurements of cycle speed and flow in Linköping (4 sites, 1–10?days in August–September 2016) and Stockholm (1 site, only part of 2?days in August 2016) were also conducted within the project, in addition to roadside observations of bicycle types at the 5 new sites.

Results: The average speed of cyclists on the paths varied between 12.5 and 26.5?km/h. As expected, the lower average speeds were found in uphill directions, near intersections, and on paths with high pedestrian flows. The higher speeds were found in downhill directions and on commuter routes. In all, 70%–95% of road users observed on pedestrian and cycle paths were cyclists, and 5%–30% were pedestrians. The most common type of bicycle was a comfort bike, followed by a trekking bike. Electric-assisted bicycles and racer bikes occurred at all sites, with proportions of 1%–10% and 1%–15%, respectively. The 2 sites with the highest proportion of electric-assisted bicycles and racer bicycles also had the highest average speeds. The differences in average speed throughout the day, week, and year could only be assessed at one of the sites. Only small differences were found, with the most noticeable being that the average speed was lower in January and February (13.8?km/h) compared to the rest of the year (15.3–16.1?km/h). The average speed was also lower during daytime (14.7?km/h) than during other parts of the day (15.4–15.8?km/h).

Conclusions: The relationship between bicycle type and measured speed was not entirely clear, but the results suggest that paths with higher proportions of electric and racer bicycles have higher average speeds. There also appears to be a connection between average speed and the width of the distribution; that is, the higher the average speed, the wider the speed distribution. More research is needed on how speed levels and speed variance affect accident risk.  相似文献   

17.
The objective was to assess head injury risks and kinematics of adult pedestrians and bicyclists in primary impact to the passenger cars and secondary impact to the ground using real world accident data and computer reconstructions of the accidents. For this purpose, a subsample of 402 pedestrians and 940 bicyclists from the GIDAS database, Germany, was used for the statistical analysis, from which 22 pedestrian and 18 bicyclist accidents were further selected for reconstruction. PC-Crash was used to calculate impact conditions, such as vehicle impact velocity, vehicle kinematic sequence, and thrown distance. These conditions were employed to identify the initial conditions in reconstruction in MADYMO program. A comparable analysis was conducted based on the results from accident analysis and computer reconstructions for the impact configurations and the resulting injury patterns of pedestrians and bicyclists in view of head injury risks. Differences in HIC, head-relative impact velocity, linear acceleration, maximum angular velocity and acceleration, contact force, thrown distance, Wrap Around Distance (WAD), and head contact time were evaluated. Injury risk curves were generated by using a logistic regression model for vehicle impact velocity. The results indicate that bicyclists suffered less severe injuries compared with severity of pedestrian injuries. In the selected samples, the AIS 2+ and AIS 3+ head injury risks for pedestrians are 50% probability at impact speed of 38.87 km/h and 54.39 km/h respectively, while for bicyclists at 53.66 km/h and 58.89 km/h respectively. The findings of high injury risks suggested that in the area with high frequency car-pedestrian accidents, the vehicle speed limit should be 40 km/h, while in the area with high frequency car-cyclist accidents the vehicle speed limit should be 50 km/h.  相似文献   

18.
Objective: Lacking information about actual driving speed on most roads in the Minneapolis–St. Paul region, we determine car speeds using observations from a Global Positioning System (GPS)-based travel survey. Speed of travel determines the likelihood and consequences of collisions. We identify the road segments where speeding occurs. This article then analyzes the relationship between link length, traveler characteristics, and speeding using GPS data collected from 152 individuals over a 7-day period as part of the Minneapolis–St. Paul Travel Behavior Inventory.

Methods: To investigate the relationship, we employed an algorithm and process to accurately match the GPS data with geographic information system (GIS) databases. Comparing actual travel speed from GPS data with posted speed limits, we measure where and when speeding occurs and by whom. We posit that link length and demographics shape the decision to speed.

Results: Speeding is widespread under both high speed limits (e.g., 60?mph [97?km/h]) and low speed limits (less than 25?mph [40?km/h]); in contrast, speeding is less common at 30–35?mph (48–56?km/h). The results suggest that driving patterns depend on the road type. We also find that when there are many intersections, the average link speed (and speeding) drops. Long links are conducive to speeding. Younger drivers and more educated drivers also speed more, and speeding occurs more often in the evening.

Conclusions: Road design and link length (or its converse, frequency of intersections) affect the likelihood of speeding. Use of increasingly available GPS data allows more systematic empirical analysis of designs and topologies that are conducive to road safety.  相似文献   

19.
OBJECTIVE: Vehicular speeds have been identified to be at the core of road accident severity and frequency globally. Whereas speed control is a fundamental priority and the cornerstone of road safety in the developed world, the subject is at rudimentary stages in most developing countries thus making research into vehicle speeds in developing nations imperative. The main aim of the study was to establish two major speed parameters, namely the mean speed and dispersion, and their implications for more extensive and long-term speed monitoring in Ghana. METHODS: Research workers stationed themselves in a parked car and used a radar gun to unobtrusively measure the travelling speeds of 4,163 vehicles over two 24-hour periods at two separate sites on one of the main inter-urban roads (Accra-Kumasi). Both sites were settled areas with posted speed limits of 50 km/hr. RESULTS: Over 95% of vehicles travelled above the posted speed limit of 50 km/hr. Vehicles on an average travelled at 87 km/hr, (95% CI=87, 88). Variation in speeds was wide, with a standard deviation of 18 km/hr for all classes of vehicles, and with a range of 40 to 187 km/hr. The highest vehicular speed was associated with the private car (97.6+/-18.3 km/hr) followed by large buses (93.6+/-13.3 km/hr) and the least was with heavy trucks (73.8+/-12.9 km/hr). CONCLUSION: The excessive vehicular speeds coupled with the wide speed variations explain in part the high incidence of traffic crashes and fatalities on the Accra-Kumasi highway. An integrated speed monitoring and control program, and realigning the highway to by-pass small and medium settlements would be required as a long-term measure for the reduction of speed-related road traffic crashes, fatalities, and injuries in Ghana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号