首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
为探究注气置换抽采煤层瓦斯的效果,揭示注弱吸附性气体N2在等压扩散和高压注入2种条件下置换煤中CH4的机理,采用自行搭建的含瓦斯煤多元气体置换试验装置,开展等压扩散和高压注入2种条件下注N2置换煤中CH4的试验研究.研究结果表明:在注N2量相同的条件下,等压扩散置换量始终高于高压注气置换量,在等压扩散下N2置换CH4效...  相似文献   

2.
为研究变质程度对CO_2置换煤中CH_4效应的影响规律,选用了无烟煤、瘦煤和气肥煤3种不同变质程度的煤样,在CH_4吸附平衡压力分别为0.75 MPa和1.3 MPa的条件下,进行了高压注CO_2置换煤中CH_4实验。实验结果表明:初始CH_4吸附平衡压力相同的条件下,CO_2的注气压力越大(即注入量越大),CO_2对CH_4的置换量越大,置换率也越大,同时吸附置吸比也越大;初始CH_4吸附平衡压力越高,注气后达到相同压力下的置换量越小,置换CH_4越困难。煤的变质程度对置换效应的影响规律为,煤的变质程度越高,CO_2对CH_4的置换量越大,但CO_2对CH_4置换率却随之减小,说明低变质程度煤中的CH_4更容易被置换。  相似文献   

3.
注气压力是煤层注气促排瓦斯工程技术的关键技术参数。为了研究注气压力对不同注源气体置驱煤中CH_4效应的影响,采用含瓦斯颗粒煤垂直应力载荷条件下向实验室注气模拟试验方法,开展1.25 MPa垂直载荷条件下无烟煤注入He、N_2和CO_2等气体置驱煤中CH_4的模拟试验。结果表明:在突破时间内注源气体全部滞留在煤层内;超过突破时间后,注源气体逐步从出口流出,其滞留率逐渐减小,最终只显现驱替作用。注源气体的突破时间随注气压力的增加而减少,随注源气体吸附性由强到弱而减少。置驱率由置换作用和驱替作用及其配比关系共同决定,其与注源气体吸附性强弱没有明显的关系,且注气压力越高置驱效率越高。  相似文献   

4.
为解决含瓦斯煤渗吸效应测试方法存在弊端、缺陷等问题,利用自制的等压泄压装置对煤样罐内的瓦斯压力进行连续监测,同时对含瓦斯煤在不同吸附平衡压力和不同含水率等压环境下的最大置换量与非等压环境下的最大置换量进行测试。结果表明:等压泄压装置的可行性(R)在98%~99.3%之间,可用于研究外加水分对煤中瓦斯的渗吸效应;等压环境下的最大置换量大于非等压环境下的最大置换量;相同吸附平衡压力下,随着含水率的增加,最大置换量的差值有减小的趋势;相同含水率下,随着吸附平衡压力的增加,最大置换量的差值亦有减小的趋势。因此,等压泄压装置为研究含瓦斯煤渗吸效应提供可靠的工具,使得到的研究结果更具有工程意义,从而为明晰水力化措施防突机理提供理论指导。  相似文献   

5.
为观察含CH_4煤岩注入CO_2后力学和渗透性能的变化,用自制三轴吸附解吸渗流试验装置开展试验,研究型煤试件内气体种类和注气压力对注CO_2煤岩强度、渗透性和应变等参数变化的影响。试验结果表明:含CH_4煤岩注入CO_2后,单轴压缩应力-应变曲线与未注入CO_2的总体变化趋势相同,但煤岩强度等参数随注气压力的变化而变化。注入等孔隙压CO_2后,含CH_4煤岩的强度和弹性模量均明显上升,但煤岩中CH_4渗透率呈现下降趋势;随着CO_2注入压力的增加,煤样的强度和弹性模量逐渐下降,而CH_4渗透率逐渐增强,注气压力每增加1 MPa,煤岩强度平均下降0.095MPa,CH_4气体渗透率平均增加1 m D。  相似文献   

6.
为了深入探讨水分对煤中瓦斯解吸特性的影响,采用试验和理论分析相结合的方法,按照原煤的固有粒度配比加工制作型煤,充分干燥后使其吸附平衡以模拟原始煤体,然后利用自制的试验装置实现水分自然进入含瓦斯煤,再测试水分润湿含瓦斯煤过程中样品缸内的瓦斯压力变化情况。结果表明:水分润湿含瓦斯煤过程中样品缸内瓦斯压力不断升高,水分能置换出煤中吸附瓦斯;相同吸附平衡压力下,煤样含水率越高,水分占据的有效吸附位越多,累计瓦斯解吸量越大,当煤样含水率达到煤的极限吸水率时,累计瓦斯解吸量达到极限值;同一含水率条件下,随吸附平衡压力增长,煤样吸附饱和度逐渐增加,水分越难进入煤体内部细微孔隙,造成累计瓦斯解吸量逐渐增加,但增幅逐渐减小,随吸附平衡压力不断升高,极限瓦斯解吸量趋于一定值。  相似文献   

7.
为研究不同注气压力与注气温度对CO2置换驱替煤层CH4的影响规律,利用Materials Studio分子动力学模拟软件,通过煤体在2元组分混合气体间的竞争吸附量、竞争吸附热及能量分布等变化规律,从微观研究煤吸附CH4与CO2之间的机理,并利用物理实验平台,选用3种高变质程度煤进行注CO2置换驱替CH4实验。结果表明:同一种变质程度煤,随着注气压力或注气温度的增大,置换率呈增长趋势、驱替比呈下降趋势、CO2突破时间变短;相同注气压力与注气温度时煤的变质程度越高,置换效率越大、驱替比越小、CO2突破时间越长。并且注气压力对于CO2置换驱替CH4的效果要优于注气温度。  相似文献   

8.
为研究CO2驱替CH4过程中注气压力对气体解吸特性的影响,采用自主搭建的驱替实验平台,在0.6,0.8,1.0 MPa不同注气压力下进行驱替实验,研究CO2驱替CH4过程中煤层温度、气体浓度、置换效率和渗透率等变化规律。实验结果表明:提高CO2注气压力可提高CO2置换驱替煤层CH4的效果。随着注气压力增大,CH4累计解吸量增大,CO2突破时间越短,CO2封存量越大,置换效率升高,驱替比下降。注气压力为0.6,0.8,1.0 MPa时,CH4累计解吸量分别为90.2,94.1,97.8 L;CO2封存量分别为19.73,19.92,20.21 mL/g;置换效率由76.9%上升到80.2%再到82.9%,驱替比由3.28下降到3.17再到3.09。注气驱替CH4过程中煤层温度升高,可分为低速升温、高速升温和趋于平缓阶段。煤层温度最高变化量分别为9.4,11.5,12.7 ℃。同一注气压力下,煤层渗透率变化可分为缓慢增长、急剧下降和趋于稳定阶段。  相似文献   

9.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

10.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

11.
为研究多因素耦合对CO_2驱替CH_4置换效率的影响,选取潞安集团常村煤矿煤样,利用自主研发物理模拟试验平台测定置换效率,并采用Design Expert软件设计Box-Behnken试验,构建置换效率在三因素、三水平条件下的二次回归响应曲面模型,分析了煤体含水率、注气压强及注入温度三因素耦合对置换效率的影响。结果表明:置换效率随注气压强和注入温度增大而增大,随含水率增大而减小;对置换效率影响程度为含水率注气压强注入温度;二次项影响程度为注气压强和注入温度注入温度和含水率注气压强和含水率,且注气压强和注入温度间存在交互作用,注气压强和含水率、注入温度和含水率之间无交互作用。  相似文献   

12.
高压注水中水对瓦斯解吸影响试验研究   总被引:1,自引:0,他引:1  
为了解高压注水后水对含瓦斯煤中瓦斯解吸的影响,利用自主设计的外液侵入条件下瓦斯解吸试验装置,在环境温度为20℃条件下,分别开展了无水侵入和有水侵入后水对含瓦斯煤中瓦斯解吸影响的对比试验,其瓦斯吸附平衡压力分别为2.5MPa,2.0MPa,1.5MPa,1.0MPa,而环境压力则分别为2.0MPa,1.5MPa,1.0MPa,0.5MPa,瓦斯吸附平衡压力与所处的环境压力之差均为0.5MPa,共进行了四组对比试验,并对试验数据进行了对比分析。结果表明:水的后置侵入不仅会使瓦斯解吸量大大减少,而且还会使瓦斯解吸的终止时间提前。因此,在评价高压注水对提高瓦斯抽采效果时,不仅要考虑高压水对煤层的增透作用以及对瓦斯的驱动作用,还应综合考虑水对瓦斯解吸的损害影响。  相似文献   

13.
为研究注CO2增产煤层气过程中注气温度对煤层渗透特性变化的影响,利用自主研发的CO2置换驱替CH4实验系统,在注气温度为40,50,60 ℃条件下进行CO2置换驱替CH4实验,定量分析置换驱替过程中出口气体流量、孔隙压力以及煤层渗透率等变化规律。研究结果表明:在实验测试的40~60 ℃范围内,提高CO2注入温度有助于产出更多的CH4及封存CO2,CO2注入温度越高,出口混合气体流量和CH4气体流量越大,呈现出先升高后降低并趋于稳定的变化趋势,实验结束时置换体积比分别为2.704,2.741和2.595,注气温度为60 ℃时驱替效果较好,每产出单位体积的CH4注入的CO2量最少;煤层孔隙压力随注气时间呈现先逐渐上升后趋于平稳的变化趋势,逐渐趋近注气压力0.8 MPa;注CO2置换驱替CH4及提高CO2注入温度会降低煤层的渗透性,注气温度恒定时,渗透率随注气时间增加呈现先逐渐降低后趋于平稳的变化规律,注气温度由40 ℃升至60 ℃时,渗透率从0.017 1×10-15 m2下降至0.009 8×10-15 m2,降低幅度为34.50%~42.69%。  相似文献   

14.
为探究冷冻取芯过程煤芯瓦斯解吸特性,基于模拟试验的相似性,依托自主研发的含瓦斯煤冷冻取芯响应特性测试平台,开展不同变质程度煤样(长焰煤、贫瘦煤、无烟煤)及不同吸附平衡压力(1.0,2.0,3.0,4.0 MPa)下冷冻取芯过程煤芯瓦斯解吸特性试验研究。研究结果表明:冷冻取芯过程中,煤芯瓦斯解吸量与吸附平衡压力及煤变质程度呈正相关关系;在煤芯瓦斯解吸过程中存在倒吸现象,煤与瓦斯初始吸附平衡压力越大,煤的变质程度越高,倒吸开始时间越迟;冷冻取芯过程中,瓦斯解吸速度与吸附平衡压力及煤变质程度呈正相关关系,且瓦斯解吸速度随吸附平衡压力及煤变质程度变化曲线符合幂函数关系。  相似文献   

15.
煤层注CO2促排瓦斯主要包含气体置换和流动驱替两种作用机理,但在注气过程中哪种机理占主导地位,能否将这两种机理剥离开还需要进一步研究。为了研究注CO2促排煤中甲烷的机理及其主导地位,进行了低应力载荷条件下分层预压成型煤样注CO2置换/驱替煤层甲烷的实验。实验结果表明:在置换和驱替最初246 min内,出气口没有检测到CO2气体,注入的CO2气体全部驻留在煤体中,没有随气流排出,宏观表现为仅有置换作用而没有驱替作用。在之后的1 180 min内,注入的CO2气体一部分继续驻留在煤体中,另一部分随气体流出,宏观表现为既有置换作用又有驱替作用,置换作用减弱,驱替作用增加的过程。在注气实验后期,随着注气时间的增加,煤体中CO2逐渐吸附平衡,驱替作用开始逐渐占据主导地位。截止到实验结束时,整个阶段过程中,置换作用累计贡献率为53.32%,驱替作用累计贡献率为46.68%,置换作用累计贡献率大于驱替作用累计贡献率,随着注气不断进行驱替作用累计贡献率会逐渐上升,会出现超过置换作用累计贡献率的现象。  相似文献   

16.
为揭示煤吸附CH_4和CO_2热力学机制,选取新疆硫磺沟的煤样进行不同温度下的CH_4和CO_2等温吸附试验,利用Langmuir、Freundlich、D-R吸附理论模型对等温吸附曲线进行拟合,基于吸附势能理论研究煤样吸附CO_2和CH_4的热力学特性。研究表明:不同温度条件下煤样吸附CH_4和CO_2曲线均符合Langmuir、Freundlich、D-R模型;CH_4和CO_2吸附势能均随着吸附量增大而降低,其等量吸附热和吸附熵变均随着吸附量增加呈上升趋势,并且CO_2的吸附势能、吸附热、吸附熵变均大于CH_4;CH_4和CO_2吸附熵随温度升高总体呈降低趋势,其吸附势能不仅受表面力场影响,也受吸附焓和吸附熵的影响;CO_2等量吸附热受分子间竞争及微孔填充的影响。吸附热力学参数能用来表征煤体吸附特性,可从热力学角度揭示煤体表面竞争吸附的实质。  相似文献   

17.
为明确CO_2与CH_4混合气体在煤中的扩散规律,建立不同宽度的石墨狭缝结构模型代替复杂的煤结构,运用分子动力学方法,研究CO_2与CH_4浓度比、温度、气体压力和储层孔径等因素对甲烷扩散性能的影响。研究结果表明:随着CO_2浓度的增大,甲烷的扩散系数降低;随着气体压力的增大,甲烷的扩散能力以及扩散系数均有明显的降低,但降低速率趋于平缓;较高的温度有助于甲烷的扩散,但作用效果并不明显;随着储层孔径的增大,甲烷的扩散系数越大。扩散系数与孔径呈现对数函数关系,与压力、CO_2浓度和温度呈指数函数关系。出现上述结果的主要原因是CH_4和CO_2的竞争吸附,以及甲烷分子和狭缝表面之间范德华力的不同造成的。  相似文献   

18.
为研究煤层硫化氢(H2S)吸附特性,厘清煤层H2S赋存规律及改善H2S防治效果,采用分压测试法研究煤对H2S的吸附规律。以山西保利铁新煤业有限公司9#煤为研究对象,分别使用N2,He/H2S,N2/H2S为吸附介质开展等温吸附试验,分析煤对H2S及含H2S混合气体的吸附特性及影响因素。结果表明:煤对H2S的吸附量随压力升高而增加,随温度升高而降低,且温度对煤吸附H2S吸附量影响较大;H2S及N2/H2S混合气体的吸附曲线均符合Langmuir吸附模型,煤吸附N2/H2S混合气体时,H2S和N2存在竞争吸附,且N2吸附能力优于H2S;等温条件下,N2竞争吸附量随吸附压力的增加而增大,等压条件下,N2的竞争吸附量受温度影响较小。  相似文献   

19.
为研究空气湿度对煤自燃特性的影响,运用程序升温试验台,在不同环境湿度条件下,对黄陵2号矿4#煤层煤样进行程序升温,分析不同温度下的气体成分,计算煤样在不同温度和湿度条件下的耗氧速率、CO和CO_2产生率,以及煤氧化的表观活化能。结果表明:与在干燥的空气中氧化相比,煤在加湿空气中的耗氧速率、CO和CO_2产生率升高,活化能降低,表明加湿有利于煤自燃;随空气湿度增加,煤体的耗氧速率、cO和CO_2产生率先升高后降低,活化能先降低后增加,表明存在一个最容易使煤氧化自燃的临界空气湿度;黄陵2号矿4#煤层煤样的临界相对湿度为25%左右。  相似文献   

20.
为研究外加水分条件下受载含瓦斯煤体的渗吸特性,利用自主设计的含瓦斯煤体等压渗吸实验装置对煤体中水分及瓦斯的运移进行连续监测,并在瓦斯压力恒定不变的条件下研究覆压及外加水分对煤体渗吸距离、渗吸速度以及瓦斯置换量的影响.结果 表明:水分在煤体中的渗吸距离随时间增长先是快速增加,而后缓慢增大.在相同外加水分条件下,相同时刻水...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号