首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
为了探讨污泥干化芦苇床稳定化污泥中甲烷氧化菌的多样性,利用PCR-DGGE技术分析了不同时期、不同于化床污泥中甲烷氧化菌群落的变化.通过DGGE图谱聚类分析发现,同一时期不同干化床污泥中甲烷氧化菌群落相似度较高;而同一干化床、不同时期污泥中的甲烷氧化菌群落有一定的差异.结果表明,污泥干化芦苇床中优势种属主要随芦苇生长时期和污泥稳定化时间延长而改变.基于序列和系统发育树分析,干化床污泥样品中主要的优势菌属是未培养的Ⅰ型甲烷氧化菌,表明有通气结构的芦苇床更能有效氧化甲烷,有利于减少甲烷的排放.  相似文献   

2.
新型单级自养脱氮与反硝化除磷耦合工艺   总被引:2,自引:0,他引:2  
反硝化除磷菌(Denitrifying Polyphosphate Accumulating Organisms,DPAOs)在缺氧段需要硝氮(NO-3-N)作为电子受体进行吸磷,而氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)和厌氧氨氧化细菌(Anaerobic ammonium oxidation,Anammox)恰好能够产生NO-3-N,基于此原理,将反硝化除磷菌与氨氧化细菌和厌氧氨氧化细菌进行联合培养,建立单级自养脱氮与反硝化除磷耦合工艺。该耦合工艺通过3个阶段的培养,在低碳氮磷比的条件下实现COD(Chemical Oxygen Demand)、氨氮及磷酸盐的同步高效去除(90%)。同时探讨了反硝化除磷细菌在不同碳源的条件下,各个化学指标(如挥发性脂肪酸、聚羟基脂肪酸等)的变化趋势及微生物群落多样性的变化情况。  相似文献   

3.
采用MUCT(Modified University of Cape Town)工艺处理低C/N实际生活污水,通过控制溶解氧和缩短水力停留时间(HRT)等手段实现短程硝化,并在短程硝化的基础上取得了良好的反硝化除磷效果。分别采用功能基因ppk1和amo A作为遗传标记对MUCT工艺短程阶段的聚磷菌(Candidatus Accumulibacter)和氨氧化细菌(AOB)的菌群结构进行了研究。ppk1功能基因系统发育分析结果表明,MUCT工艺中Candidatus Accumulibacter分支具有多样化,共包含IID、IIC、IIF 3个进化枝。Candidatus Accumulibacter以TypeⅡ型为主,其中分支Acc-IID占克隆文库的94.3%,是Candidatus Accumulibacter中的优势菌属。证实了在以亚硝酸盐为电子受体的条件下,Acc-IID为除磷的主要承担者。分支Acc-IIF的出现可能与反应系统保持较高温度有关。amo A基因的系统发育分析结果表明,所有AOB序列属于Nitrosomonas europaea lineage。通过低溶解氧和短HRT建立的短程是N.europaea lineage成为AOB中优势菌属的重要原因。研究表明,短程反硝化条件下MUCT反应器中的优势Candidatus Accumulibacter和AOB分别为IID和N.europaea lineage,其丰度和菌群结构是影响污水生物除磷和硝化效果的主要因素。  相似文献   

4.
苯酚对硝化颗粒污泥性能的影响   总被引:1,自引:0,他引:1  
采用序批实验研究了苯酚对硝化颗粒污泥性能的影响.结果表明.苯酚的存在显著地降低了氨氮降解率,抑制了硝化颗粒污泥中氨氧化菌的活性和亚硝酸氧化菌的活性,显著地降低了氨氮的比降解速率和硝氮的比生成速率,降低了硝化颗粒污泥的硝化性能.苯酚去除后,硝化颗粒污泥中氨氧化菌的活性可以完全恢复,而亚硝酸氧化菌的活性不能完全恢复.苯酚的降解是硝化颗粒污泥中的好氧异养菌、硝化菌和厌氧的反硝化菌共同作用的结果.  相似文献   

5.
以内蒙古高原湖滨湿地乌梁素海小河口为研究对象,在湖中芦苇沉积物、湖滨沼泽水葱沉积物、湖滨碱蓬盐碱化草甸土壤、湖岸白刺荒漠化土壤的陆向分布梯度上采集样品,应用克隆文库构建技术对湿地环境中硫酸盐还原菌(SRB)群落多样性进行研究,分析了土壤基质条件对SRB群落的影响及该类功能菌群在湿地退化过程中的环境响应机制。结果表明:4个样地中的硫酸盐还原菌属于Proteobacteria中的5个目,即着色菌目(Chromatiales)、酸硫杆状菌目(Acidithiobacillales)、脱硫弧菌目(Desulfovibrionales)、脱硫杆菌目(Desulfobacterales)和硫还原菌目(Desulfurellales),且着色菌目(Chromatiales)、脱硫弧菌目(Desulfovibrionales)和脱硫杆菌目(Desulfobacterales)为优势菌群;沉积物与土壤环境中SRB群落结构差异性较大,沉积物基质中SRB群落结构较为相似,而盐碱化与荒漠化环境中SRB群落较为相似,沉积物环境中SRB群落多样性较高;铵态氮、含水率对沉积物SRB群落影响显著,水溶盐总量对土壤基质SRB群落影响显著。  相似文献   

6.
接种不同污泥启动厌氧氨氧化ASBR反应器研究   总被引:7,自引:0,他引:7  
采用ASBR反应器,分别以好氧硝化污泥和厌氧颗粒污泥为种泥,通过对氨氮、亚硝酸盐氮等指标的监测和数据分析、污泥颜色的观察,研究2个厌氧氨氧化反应器启动的可行性及其差异.结果表明,2个厌氧氨氧化反应器均可成功启动;采用好氧硝化污泥启动厌氧氨氧化反应器耗时142 d,启动前后污泥颜色变化不大,亚硝酸盐氮浓度超过20 mmol/L会对厌氧氨氧化产生明显的抑制作用;采用厌氧颗粒污泥启动厌氧氨氧化反应器耗时249 d,启动前后污泥颜色变化很大,从黑色逐渐变为砖红色,亚硝酸盐氮浓度超过13.4 mmol/L会对厌氧氨氧化产生抑制作用;分别用以上2种污泥启动的厌氧氨氧化ASBR反应器中占优势地位的厌氧氨氧化菌不同.  相似文献   

7.
零价铁-反硝化菌在地下水硝酸盐污染修复中的应用   总被引:2,自引:0,他引:2  
综述了应用零价铁-反硝化菌复合体系去除地下水中硝酸盐氮污染的研究进展.脱氮技术主要包括物理化学法、化学还原法和生物反硝化法,但单独使用任何一种方法都无法得到令人满意的处理效果.以零价铁在水中厌氧腐蚀所释放的氯气供给微生物进行反硝化,可以同时解决这两种技术单独使用时所存在的弊端.在此复合体系中,主要反应包括产氨、析氢和反硝化,降低脱氮产物中的氨氮比例就要减少产氨反应的发生几率.此外,使用纳米铁代替零价铁和反硝化细菌复合,可以大大提高脱氮反应速率.然而,该技术的研究在国内外尚处于起步阶段,在反应机理、产物控制、条件优化等方面都存在不足,还需要深入研究.  相似文献   

8.
反应器运行环境对反硝化颗粒污泥培养具有重要影响,在上流厌氧污泥床反应器内研究了不同运行策略培养颗粒污泥的脱氮效率、污泥性能和菌群结构,同时对比分析了快速和慢速提升氮负荷策略培养反硝化颗粒污泥的性能。结果表明:耦合提升策略培养反硝化颗粒污泥的脱氮效率达到93.29%以上,悬浮挥发性固体质量浓度为46.29 g/L,粒径主要分布在2.36~3.35 mm,胞外聚合物为119.03 mg/g VSS,反硝化优势菌Proteobacteria在颗粒污泥菌群中所占比例为61.92%;相较于慢速提升氮负荷策略,快速提升氮负荷策略促使污泥脱氮效率增加了5.48%,挥发性悬浮固体质量浓度增加了20.11 g/L,粒径为2.36~3.35 mm的污泥占比增加了10%左右,胞外聚合物增加了7.27 mg/g VSS,Proteobacteria所占比例增加了5.11%。研究表明,耦合提升策略能够培养出脱氮效率高且性能良好的反硝化颗粒污泥,快速提升氮负荷能够促进颗粒污泥脱氮效率增加、性能更好。  相似文献   

9.
为探讨地质封存CO_2泄漏对土壤微生态环境的影响,以中国青海省西宁市平安县三合镇天然CO_2泄漏试验场土壤为研究对象,采用活菌计数法测定不同物质的量比CO_2试验区土壤微生物的菌落数目,应用PCR-DGGE(Denaturing Gradient Gel Electrophoresis)和16S r DNA文库技术对样品的细菌和真菌群落结构及遗传多样性进行分析。结果表明:当CO_2物质的量比由600μmol/mol增加到23 000μmol/mol时,土壤细菌、真菌数量明显增加,而放线菌数量显著减少;各试验区细菌和真菌多样性指数(H)、丰度(S)有所不同,土壤真菌多样性变化高于细菌;高物质的量比CO_2对真菌Geomyces sp.、根瘤菌unclassified_Rhizobiales等菌群的生长产生刺激作用,但对unclassified-Actinobacteria(放线菌群)、Sphingomonas sp.(鞘氨醇单胞菌属)等菌群的生长有抑制作用;3 010μmol/mol CO_2对真菌Ascomycota sp.(子囊菌门)、Phoma medicaginis(茎点霉)产生了较强的毒性,使之不能正常生长繁殖。研究表明:高物质的量比CO_2入侵土壤包气带对微生物群落多样性影响较大,主要表现为原有细菌、真菌数量的丰富或被削弱,或部分物种的消失及新物种的出现,但其主要建群种未变;对根瘤菌等菌群生长的刺激作用可能使土壤固氮能力提高;不同物质的量比CO_2入侵下土壤细菌群落相似性系数远大于真菌,即真菌对CO_2胁迫表现更为敏感,真菌Ascomycota sp.及Phoma medicaginis有望成为地质封存CO_2泄漏微生物监测与甄别的指示菌种。  相似文献   

10.
为明确厌氧氨氧化和反硝化协同脱氮除碳过程,采用ABR反应器控制进水氨氮和亚硝酸盐氮质量浓度分别为75 mg/L、110 mg/L,研究在不同进水COD浓度下脱氮除碳效果。结果表明,在ABR反应器的不同隔室脱氮除碳途径存在差异,低浓度COD(质量浓度120 mg/L)为Anammox菌和反硝化菌之间良好的协同作用提供了保障从而实现稳定高效脱氮除碳,TN和COD去除率分别在98%和79%以上,但在高进水COD(质量浓度120 mg/L)条件下,异养反硝化作用增强使得COD去除率可达到92%,Anammox受到限制致使总氮去除率降至70%。  相似文献   

11.
采用有效容积为6.3 L的上流式流化床接种普通污泥,进行了厌氧氨氧化反应器的启动,研究了先富集反硝化污泥再启动厌氧氨氧化反应器的过程特征。首先投配硝氮质量浓度70 mg/L、以葡萄糖为碳源、COD为200 mg/L的模拟废水增强污泥的反硝化能力。运行6 d后,出水硝氮质量浓度在10 mg/L左右,反应器对硝氮的去除率稳定在80%以上,污泥具有较高的反硝化活性。随后投配氨氮质量浓度50~60 mg/L、亚硝氮质量浓度30~58 mg/L的废水进行厌氧氨氧化菌培养。培养一开始出水氨氮质量浓度就比进水低,第31 d氨氮的去除率达到50%以上。逐步提高进水氨氮和亚硝酸氮质量浓度,从100 mg/L、140 mg/L、200 mg/L到420 mg/L,氨氮和亚硝氮去除率亦不断提高。第40 d后,反应器氨氮去除量、亚硝氮去除量和硝氮增加量之比在1∶(1.3±0.2)∶(0.3±0.1)范围内小幅波动,表明厌氧氨氧化反应已经成为反应器内的主导脱氮反应。经过76 d的培养,在进水氨氮和亚硝氮质量浓度分别为405.23 mg/L和488.24 mg/L时,反应器对它们的去除率达到80%和95.22%,最大氮去除速率为0.93 kg/(m3·d)。研究表明,采用上流式流化反应器先富集反硝化菌再培养厌氧氨氧化菌和采用逐步提高进水负荷的启动策略,对于快速培养高活性Anammox污泥、启动反应器是有效的。  相似文献   

12.
为比较填充不同填料(悬浮填料和弹性填料)生物反应器的抗冲击负荷能力,研究了不同水力停留时间(14.80 h、11.90 h、9.89 h和7.99 h)下两组反应器的处理性能及附着生物膜的特性,通过提取基因组DNA,采用PCR扩增与高通量测序技术对水力停留时间为7.99 h工况下两者菌群测序并进行了操作单元(OTU)聚类分析、多样性分析和分类学分析。结果表明,不同水力停留时间下弹性填料附着的生物膜量和胞外多聚物(EPS)质量比均高于悬浮填料,生物膜结构较为稳定;弹性填料和悬浮填料富集微生物菌群的高通量测序分析均得到优化序列23 129条,测序覆盖深度都在99%左右,经过97%相似度归并后分别得到375个OTUs和307个OTUs,与悬浮填料相比,弹性填料附着的生物膜内硝化菌和反硝化菌丰度均较高,这在一定程度上表明弹性填料在处理污染河水时具有较强的抗冲击负荷能力。  相似文献   

13.
以活性污泥为种泥,通过序批式反应器(Sequencing Batch Reactor,SBR),在厌氧-缺氧-好氧交替的条件下驯化培养以硝酸盐为主要氮源的反硝化除磷细菌(Denitrifying Phosphorus-Accumulating Organisms,DPAO)。在330 d的培养时间内监测磷酸盐、硝酸盐和亚硝酸盐等常规指标,并研究驯化不同阶段的一个周期内各指标的变化及进行相应的动力学分析。结果表明,随着驯化的进行,厌氧阶段释磷速率逐渐增加,释磷量也相应增大,出水磷质量浓度最终维持在0.8mg/L,去除率达到91.8%,硝氮全部去除。通过对16S r RNA测序结果的比对,得到聚磷菌占总菌的76.93%,反硝化除磷菌占聚磷菌的一半以上。而聚糖菌仅占5.13%,聚磷菌成为优势菌种。此外,在整个驯化过程中,水质和环境条件的变化使出水中磷质量浓度出现波动,而出水硝氮的变化不大。研究表明,以硝酸盐作为主要氮源培养反硝化除磷细菌的方式是可行的,并有利于聚磷菌对聚糖菌的竞争,使聚磷菌成为优势菌种。  相似文献   

14.
前置反硝化生物滤池菌群功能恢复研究   总被引:1,自引:0,他引:1  
在一定的反冲洗模式和强度下,用各功能菌群的生物活性、生物量及二者的乘积考察了反硝化生物滤池和曝气生物滤池菌群功能的恢复.结果表明,反洗后初期曝气生物滤池(CN 池)滤料上异养菌活性较低,总降解能力降低了约20%,而后迅速增加,约50 min恢复到最佳状态;亚硝化细菌生物活性变化与之相反;反硝化生物滤池(DN池)亚硝酸与硝酸还原菌生物活性曲线变化趋势相同,且反洗后前者生物活性略大于后者.CN和DN池生物膜量由滤料底部到顶部呈现由大到小的变化,在试验期内随时间延长稳步增长.CN池中反洗后80 min各功能菌生物量和生物活性较适宜,功能恢复到最佳,DN池中还原菌生物活性在反洗后 120 min接近最大值,功能恢复还需要较长的时间.  相似文献   

15.
污泥干化芦苇床中芦苇内生菌群多样性研究   总被引:1,自引:0,他引:1  
以污泥干化芦苇床中芦苇内生菌的多样性作为主要研究对象,结合16S rDNA高通量测序技术与PCR-DGGE技术,对污泥干化芦苇床和天然湿地中污泥菌群及芦苇内生菌群多样性进行了比较分析。结果表明,污泥干化芦苇床芦苇内生菌的细菌类群包含了20门、30纲、73目、152科、467属、1 167种细菌。其中变形菌门(65.6%)和拟杆菌门(25.5%)占绝对优势,γ-变形菌纲是丰度最高的纲,占总数的43.4%;排前20位的优势菌种相对百分比之和为46.5%,分属于所对应的18个属、12科、10目、6纲、3门。DGGE分析表明,污泥干化芦苇床中的污泥和芦苇内生菌优势菌群的种类与天然湿地相比差异显著;同时由于污泥的影响,芦苇内生菌群种类也发生了较为明显的变化。  相似文献   

16.
影响短程硝化反硝化的因素   总被引:17,自引:1,他引:16  
短程硝化反硝化是指将硝化过程控制在亚硝化阶段,随后在缺氧条件下进行反硝化的生物脱氮过程,其关键是如何控制硝化过程中影响HNO2积累的因素,分析影响HNO2积累因素,包括温度、游离氨、pH值、溶解氧、有害物质和泥龄,探讨实现短程硝化反硝化的途径。  相似文献   

17.
筛选出了一株适用于石化污水处理的异养硝化-好氧反硝化产微生物絮凝剂菌株HAD-2,鉴定其为门多萨假单胞菌(Pseudomonas mendocina),考察了其最佳硝化条件、反硝化性能及在模拟污水中的脱氮能力。菌株为耐热菌,偏碱性(pH=8.5)和高碳氮比(25∶1)时硝化性能最佳。在异养硝化体系中,12 h时菌株对氨氮的去除率达到92.29%,硝酸盐和亚硝酸盐积累少;在反硝化体系中,12 h时菌株对亚硝酸盐和硝酸盐的去除率分别达到86.40%和84.92%;在模拟废水中,48 h时菌株对氨氮、硝态氮和亚硝态氮的降解率分别达到95.25%、65.47%和72.40%。菌株在多种培养基中可产微生物絮凝剂,在葡萄糖培养基中絮凝能力最佳,絮凝率为94%。  相似文献   

18.
以异养硝化-好氧反硝化菌为主体,构建了微氧-缺氧双区式微生物电解池MEC(R1),并以缺氧单区MEC(R2)作为对照组,采用连续进水方式,研究其对低C/N比轻度污染废水的脱氮处理效果及微生物强化机制。结果表明,在进水COD 70~80 mg/L、TN质量浓度35~40 mg/L、电流3m A、溶解氧(DO)质量浓度0. 5~1. 0 mg/L的条件下,连续运行约1个月后,R1出水COD、TN质量浓度即可达到一级A排放标准;当C/N比为2~5时,R1出水TN质量浓度为(4. 90±1. 08)~(14. 50±0. 133) mg/L,COD为(8. 20±2. 36)~(12. 53±5. 03) mg/L,均达到了一级A标准,硝化-好氧反硝化及弱电强化作用是脱氮和COD去除的主要途径。高通量测序分析结果表明,R1中细菌多样性虽与R2相当,但细菌丰富度明显大于R2;而且,R1中的贫营养硝化反硝化菌属Zoogloea丰度明显大于R2,且含有自养型反硝化菌属Moheibacterm、好氧反硝化菌属Ferruginibacter和Denitratisoma及可为反硝化提供聚β-羟丁酸的Plasticicumulans菌属。研究表明双区式MEC可有效处理低COD、低TN、低C/N比的废水,且具有启动快的特点,具有良好的应用潜力。  相似文献   

19.
采用RS和GIS技术提取长江上游土地利用类型数据,构建多因素综合模型进行农田生态系统敏感性评价,并深入分析其主要威胁因素,探讨其空间分布及特征。结果表明:1)农田生态系统敏感性水平整体处于中、高敏感状态,中度、高度和极敏感区占整个农田生态系统面积的84.76%;2)农田生态系统敏感区主要位于成渝经济区,还涉及四川、重庆、云南和贵州等省市;3)农田生态系统敏感性主要威胁因子为人口密度、道路密度、土壤有机质质量分数、化肥施用量等;4)长江流域农产品主产区与农田生态系统高度敏感区具有较高区位重合性。  相似文献   

20.
太湖蓝藻危机进一步促使国内重点流域提高了氨氮及总氮的最高允许排放标准,推动了含氮废水处理技术的创新开发和处理工艺的应用推广.目前应用的脱氮技术主要包括物化法和生化法两大类,其中生化法中的新型生化脱氮技术是近年的研究热点,包括同步硝化反硝化、短程硝化反硝化、厌氧氨氧化和全程自养脱氮等工艺.综述了物化、生化及物化-生化集成脱氮技术,分析了含氨氮、有机氮、硝态氮、垃圾渗滤液等含氮废水适宦的处理工艺,指出物化-生化集成工艺及新型生物技术足经济、高效、稳定脱氮技术的发展趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号