首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
压入式局部通风倾斜巷道掘进工作面瓦斯分布规律   总被引:3,自引:2,他引:1  
运用Fluent软件对压入式局部通风倾斜巷道掘进工作面瓦斯分布进行了模拟.比较了向上掘进和向下掘进巷道中瓦斯分布的不同;分析了风量对向上、向下倾斜掘进巷道中瓦斯分布的影响;研究了消除瓦斯高浓度区域向上、向下倾斜巷道所需风量的差别.结果表明:当条件相同,即风筒出口平均风速、倾斜角度和迎头瓦斯涌出量相同时,向上倾斜掘进工作面的高浓度瓦斯区域比向下倾斜时的高浓度瓦斯区域大;当回风流中瓦斯平均浓度不变时,随着风量和瓦斯涌出量的增加,由于风量的增加使到达迎头的风速变大,使空气和瓦斯混合得更加均匀,向上倾斜掘进工作面的高浓度瓦斯区域和向下倾斜的高浓度瓦斯区域之间的差距逐渐减小.消除高浓度瓦斯区域所需的风筒出口风量向上倾斜掘进巷道比向下倾斜掘进巷道大.  相似文献   

2.
针对井下巷道-矿车系统易造成巷道风流紊乱、影响矿井通风系统安全稳定性的问题,建立巷道-矿车系统风流扰动模式及影响因素体系,提出表征巷道-矿车系统的风流扰动特征的关键参数,包括巷道扰动风阻、阻塞比、矿车位置,推导矿车运行至巷道不同位置时巷道-矿车系统扰动风阻计算公式,研究巷道风速、阻塞比与巷道风阻的关系。研究结果表明:矿车在巷道中顺风行驶的速度大于风速时,巷道-矿车系统对通风系统进行增压调节;当矿车逆风行驶时,巷道-矿车系统的风阻随着矿井通风系统供风量的增大而减小,最大扰动为矿车驶出巷道时刻,阻塞比与巷道风阻呈现线性递增关系;此外,小风速、小断面巷道运行的矿车对巷道-矿车系统的风阻影响较大,模型求解结果与实测数据的最大误差为6.84%。研究结果可为矿井通风系统的智能化调控提供理论依据。  相似文献   

3.
针对传统的接触式瞬时速度测量方法的局限性,采用非接触测量技术激光多普勒测速仪(LDA)及粒子成像测速仪(PIV)对平直巷道及断面突扩后风流状态进行试验测试。在巷道试验模型条件下,PIV技术可以瞬时获得巷道突扩流场信息,平直巷道速度流线基本呈平滑直线,突扩隅角有大涡存在,并且涡流区测风方向极不稳定,而且风速很低,风速平均值在0.1~0.2 m/s波动,表明在煤矿井下测风时可以有条件地忽略涡流区。LDA技术测试得到巷道断面各点统计平均流速,由于受突扩涡流及二次流的影响,平直巷道断面风速从壁面以跃迁方式"突变"达到均值,断面风速分布呈近似均等的动态波浪线分布而非准抛物线型分布。结果表明,LDA与PIV测量技术联合应用可以测试以湍流为特征的巷道流场风流变化情况。  相似文献   

4.
为研究火灾时期矿山通风巷道风流的流动特性,基于水平巷道及火灾的物理数学模型,采用数值分析方法,研究分析火灾时期巷道内紊流充分发展截面上“特征环”与“关键环”的分布规律。结果表明:同一火灾强度和同一通风风速下,通风巷道内风速“特征环”分布特征分别存在临界风速值和临界火灾强度值;矿井火灾时期,通风风速与火灾强度均是影响巷道内风速“特征环”分布的关键因素;当巷道内通风风速大于或等于5 m/s时,火灾下风流平均风速点的位置可由正常通风时期的“关键环”特征方程进行计算。  相似文献   

5.
为探究巷道断面平均风速分布规律,准确测定风速大小,利用激光多普勒测速仪(LDA)进行测试试验,并通过Fluent数值模拟方法研究矩形、半圆拱和梯形巷道断面的风速分布特征。试验表明,风流质点速度呈湍流随机脉动特性,但服从正态分布。就瞬时风速而言,巷道断面平均风速分布环状曲线为不规则波浪形式;Fluent模拟表明,巷道风流充分发展的断面上的平均风速分布与通风风速大小无关,仅与巷道断面形状有关。基于统计平均的试验结果与Fluent数值模拟结果吻合较好,进一步说明,可以在巷道断面平均风速分布点位布置测点,考虑风流脉动影响,将该测点风流各态遍历周期内的速度统计均值作为巷道断面平均风速,无需系数校正。  相似文献   

6.
煤矿井下巷道风速是随时变化的,主要规律是一种围绕某一平均值的上下起伏的平稳随机过程,其表现为平均风速和脉动风速,风速传感器最大限度地反映了井下主要巷道风速信息。我们将井下风速传感器与通风解算技术相结合,对全矿井的风网进行实时计算,从而得到了全矿井较准确的实时分风量分布状况。系统能够将风速传感器采集到的实时风速转换为巷道的实时风量,根据月风量统计结果进行巷道阻力系数的自动调整;系统采用相关分析技术,测定煤矿井下数据之间相关关系和规律,并据此建立预分析测模型,进而进行风量的预测和控制;系统具有自我学习功能,通过不断修正模型参数,将实时井下探测数据用于分析和预测,为安全管理提供有效指导。  相似文献   

7.
为探究掘进巷道内的粉尘运移规律,依据相似理论,自主搭建掘进巷道相似试验平台,开展风速分布试验,并通过软件fluent模拟研究掘进巷道风流场的分区特征和回流区变化特征。结果表明:风流场特征表现为掘进工作面附近风速波动明显,后方风速分布均匀;数值模拟分析进一步得出,回流区占巷道横截面的比例随着横截面与工作面距离的增加而增大,且存在3个增长停滞段,它们分别与工作面附近的2处涡流和巷道后方区域相对应;大断面巷道与相似模型的平均风速满足相似比,且试验数据与模拟结果基本吻合,验证了模拟的有效性。  相似文献   

8.
针对传统接触式瞬时速度测量方法的局限性,采用非接触测量技术粒子图像测速仪(PIV)获得了突扩巷道流场纵向截面风流分布特征。实验表明:瞬态风流分布“瞬息万变”,而时均流场中,突扩前平直巷道时均速度流线基本呈平滑直线,突扩后上下隅角有大涡存在,但呈现不对称分布,并且涡流区内风流方向极不稳定,且风速值相对于主流风速很低,约在-0.6~0.6 m/s之间波动,表明在煤矿井下测风时可以有条件地忽略涡流区;受突扩大涡湍流脉动影响,风流在距离突扩界面150 mm处开始呈现上扬趋势,突扩断面纵对称轴上风速分布峰值拐点发生了震荡性偏移;当下隅角回流区结束后,风速分布峰值拐点渐渐下移并逐渐呈现对称趋势,回流区内断面风速整体呈现出“Ω”型分布形式。为井下更为复杂的风流湍流流动研究提供了实验理论基础。  相似文献   

9.
针对传统接触式瞬时速度测量方法的局限性,采用非接触测量技术粒子图像测速仪(PIV)获得了突扩巷道流场纵向截面风流分布特征。实验表明:瞬态风流分布"瞬息万变",而时均流场中,突扩前平直巷道时均速度流线基本呈平滑直线,突扩后上下隅角有大涡存在,但呈现不对称分布,并且涡流区内风流方向极不稳定,且风速值相对于主流风速很低,约在-0.6~0.6 m/s之间波动,表明在煤矿井下测风时可以有条件地忽略涡流区;受突扩大涡湍流脉动影响,风流在距离突扩界面150 mm处开始呈现上扬趋势,突扩断面纵对称轴上风速分布峰值拐点发生了震荡性偏移;当下隅角回流区结束后,风速分布峰值拐点渐渐下移并逐渐呈现对称趋势,回流区内断面风速整体呈现出"Ω"型分布形式。为井下更为复杂的风流湍流流动研究提供了实验理论基础。  相似文献   

10.
为实现矿井巷道内风量的准确监测,基于3D数值模型,对梯形截面巷道内平均风速的分布规律进行了数值分析,并通过实验研究对模拟结果进行对比验证,同时在不同断面尺寸及不同通风风速条件下,数值分析了梯形巷道内紊流充分发展截面上平均风速点的分布特征。结果表明:平均风速分布呈现环状连续分布,数值结果与实验结果符合良好;梯形截面上平均风速点的分布与通风风速无关,仅与巷道截面特征和参数有关;得到了梯形截面平均风速分布曲线在巷道顶部的特征方程。  相似文献   

11.
已有文献对峒室型采场按排尘风速计算风量介绍了如下的方法: Q=Sv (1)式中 S-采场内作业点的过风断面积,m~2;v-回采工作面要求的排尘风速,m/s;对于峒室型回采工作面,当断面积S≤30~40m~2时,取v=0.15m/s;当s>30~40m~2时,取v≥0.06 m/s。这一计算方法,没有考虑峒室型采场风流的结构特点、风速分布的规律和风流的运动规律,仍按照一般巷道型采场风速分布的规律进行风量计算,虽然在排尘风速的选取  相似文献   

12.
通风系统风流发生变化,从整个网络角度考虑都可以归结为分支的风阻发生了变化。从这一角度分析了大明矿分支风阻变化与各分支风量之间的关系,提出了风阻-风流变化影响关系矩阵法,确定可能使风速异常的巷道集合——故障巷道集合,建立通风网络"故障巷道范围库"。为了故障源诊断能够包含所有分支,研究风速传感器布置的最小数量及位置问题,提出了最少全覆盖布点法,给出了大明矿风速传感器的布置方案。大明矿故障源诊断结果与现场试验结果一致,验证了矿井通风系统故障源诊断技术及方法的可行性。  相似文献   

13.
倾斜巷道中风流方向对瓦斯分布与积聚的影响   总被引:1,自引:1,他引:0  
基于计算流体动力学基本理论,利用Fluent软件,采用控制容积法对描述流体流动的控制方程进行离散,用SIMPLEC(协调一致的压力耦合方程组的半隐式方法)算法来解算流场,使用标准 k-ε 壁面函数法解决近壁面的流动,在湍流充分发展区使用标准双方程湍流模型,对倾斜巷道两帮煤壁涌出瓦斯情况下的瓦斯分布与积聚进行数值模拟,研究了风速和倾角不同时风流方向对巷道中瓦斯分布的影响规律.结果表明:倾斜巷道两帮煤壁涌出瓦斯情况下巷道两帮煤壁附近及其上部的两个角上容易积聚高浓度瓦斯,且同一个横断面上部的瓦斯浓度比下部高;风速越大、巷道倾角越大,高浓度瓦斯与空气的交换距离越短,瓦斯与空气充分混合需要的距离越短;下行通风且风速较小时,巷道顶板出现明显的瓦斯逆流现象,逆流区瓦斯浓度远大于瓦斯涌出点下风流一侧的瓦斯浓度,随着风速增大,瓦斯逆流长度逐渐变短.  相似文献   

14.
掘进巷道瓦斯分布数值实验研究   总被引:5,自引:1,他引:4  
根据局部通风流场特点确定适合矿井局部通风掘进巷道工作面瓦斯与风流质量交换的数学模型,在近壁面使用标准壁面函数法解决近壁面的流动,在湍流充分发展区,使用RNG k-ε双方程湍流模型;讨论考虑巷道支护的情况下壁面粗糙度的影响,确定矿井掘进工作面局部通风模型网格划分的方法、掘进头瓦斯涌出的边界条件;利用计算流体力学(CFD)软件Fluent对掘进工作面的风流与瓦斯的混合过程进行了模拟;得出不同瓦斯涌出量情况下掘进巷道工作面风流分布和瓦斯浓度的分布规律。研究表明:瓦斯涌出量和风速对流场分布有影响,随着瓦斯涌出量的增大和风速的降低,瓦斯对流场的影响越来越明显。  相似文献   

15.
贯通巷道风流流场数值模拟若干关键问题研究   总被引:2,自引:0,他引:2  
根据计算流体力学基本理论,利用计算流体动力学(CFD)软件Fluent,运用三维k-ε湍流模型对贯通型巷道风流流场数值模拟中风流入口、出口位置对巷道风流流场分布的影响、湍动能k及湍动能耗散率ε的取值对模拟结果的影响等进行考察。通过研究确定模拟巷道的流体力学入口长度,确定模拟巷道出口位置;湍动能k及湍动能耗散率ε的取值对入口附近流动还没有充分发展区域拟解算的结果影响较大,而对流动充分发展的区域影响较小。将数值模拟风速值与理论计算风速值进行对比,模拟结果与计算结果非常一致,验证了数值模拟方法的正确性,为研究贯通型巷道风流传质过程、瓦斯运移规律及通风排污效率等提供了理论基础。  相似文献   

16.
矿山井巷的密闭墙是切断风流,防止风流短路,漏风和烟尘蔓延的井下通风构筑物。密闭墙的严密程度对通风系统的稳定性、可靠性和合理性有很大的影响。衡量密闭墙严密程度的重要指标是它的漏风量,即单位时间内通过密闭墙漏失的风量米~3/秒或米~3/分。量测密闭墙漏风量,往往因风速太低读不出准确的数值,误差比较大而得不到精确的结果,至今还没有一个较完善的方法。  相似文献   

17.
为了明确矿井巷道通风量及角度变化对火灾的影响规律,运用矿井火灾管道试验平台及各种传感器数据采集系统,开展下行通风火灾的管道相似模拟试验,得到在不同通风机动力和巷道倾角下巷道风量、各测点温度随时间的变化规律,对下行风流火灾时的风流紊乱状态有了进一步认识。结果表明,火灾时燃烧温度迅速到达顶峰后温度衰减速度随风量增大而加快,巷道火灾高温区域随着巷道风速增大而向火源下风侧移动。增大巷道倾斜角度,火风压作用增强,通风系统稳定性降低,更容易发生烟流逆退现象。在下行通风试验中,存在一个使火风压与通风机动力大小相等方向相反的临界风速。矿井火灾烟流是否产生逆退现象与通风能力有关,通风能力越强,巷道风流克服火区阻力、保持原状态的能力越强。  相似文献   

18.
煤矿瓦斯、煤尘、火灾、是矿井发生伤害严重的危害因素,而煤矿通风对防治煤矿瓦斯、煤尘、火灾起着本质的作用.煤矿通风评价首先要做好影响煤矿通风的基础资料.煤矿测风数据是煤矿通风评价的重要依据,测风数据应包括各用风地点的风量,可能漏风的区域,低风速区域的风量数据,通过分析数据判断影响发生瓦斯、煤尘、火灾危险的因素.分析煤矿通风系统对各用风点风量的影响因素,以及对漏风、低风速区域的影响因素.对自然风压影响的因素作业评价.根据上述内容分析作出对应的结论和针对性措施.  相似文献   

19.
为了研究矿井巷道围岩温度场的分布情况,首先在羊场湾煤矿13采区回风下山937高程附近,利用深孔测温技术测定围岩温度,同时测定具有代表性的岩石热物性参数;然后利用COMSOL软件建立数值模型,模拟巷道围岩的温度场;最后通过改变通风时间和风流特性,分析其对该巷道调热圈温度场的影响。结果表明:通过深孔测温可知该巷道原始岩温为28.3℃,调热圈半径为32 m;通过数值模拟可知:其调热圈半径为30.9 m,与实测结果误差为3.4%。随着巷道通风时间的延长,围岩的扰动范围不断增加,围岩温度不断降低,且温度降低速率逐渐变缓;随着风流温度的降低,围岩温度也逐渐下降,且越靠近巷壁的围岩受风流温度的影响越明显;随着风流速度的增大,围岩温度会逐渐下降,当风速大于4 m/s时,围岩温度趋于稳定。  相似文献   

20.
随着矿井开采深度的逐渐增加,地温升高,产生的高温环境必然会引起矿井通风系统特性的改变。介绍了高温矿井主要热源及其特征,并对它们进行了分类,研究了不同热源产生的热力风压、风流流动热阻力的特点,得到了非水平巷道热力风压影响风流方向的判别式,水平巷道热阻嵌入串、并、角联风路的风流流动规律,确定了热阻嵌入通风网络解算的风量修正公式。根据上述结论,分析了周源山煤矿矿井热源对风流稳定性的影响。结果表明,热阻对分支的风量影响达11.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号