首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
针对地质灾害对埋地管道安全运行的威胁,采用非线性有限元法,利用ABAQUS软件建立外力作用下含缺陷管道的有限元模型,研究缺陷长度、宽度和深度3个参数对含缺陷埋地管道承载力的影响,确定优化的物理实验工况参数;对含预制缺陷的管道进行全尺寸静载物理实验,研究含缺陷的管道在3点弯曲静力加载情况下的缺陷发展变化规律。研究结果表明:当缺陷深度系数达到0. 6、缺陷长度系数达到0. 5之后,缺陷深度和长度的增加对管道承载外力的影响已不明显;缺陷宽度系数对管道承载力的影响随宽度系数增加越来越显著。  相似文献   

2.
为评估含腐蚀缺陷的凹陷压力管道的安全性,用有限元弹塑性分析法,建立管道数值计算模型。研究管道缺陷长度、深度、宽度、压头直径、下压深度和初始内压等敏感性参数对含腐蚀凹陷管道极限载荷的影响。基于PCORRC法,推导多因素失效评价公式基本形式。用非线性回归分析法,拟合公式中的待定系数。结果表明,除缺陷宽度外,其余因素对极限内压影响较大;随缺陷深度、下压深度和初始内压的增大,极限内压均呈减小趋势;压头尺寸与缺陷长度相对大小不同,极限内压变化规律存在差异;失效评价公式计算值与数值模拟结果吻合度较高,相对误差较小。  相似文献   

3.
几种油气输送管材料的疲劳特性与管道寿命预测   总被引:1,自引:0,他引:1  
针对油气输送管道的疲劳问题,选择管道工程中常用的螺旋缝埋弧焊管(SSAW)、高频电阻焊管(ERW)和直缝埋弧焊管(UOE)3种材料采用小试样对不同区域(管体、焊缝、热影响区)的疲劳裂纹扩展特性进行测试与对比研究.同时,采用自行研制的油气输送管全尺寸实物疲劳试验系统对含裂纹类缺陷的X60 SSAW焊管进行了水压实物疲劳试验,对含表面裂纹缺陷的输送管在承受内压疲劳载荷下表面裂纹的扩展规律进行了探索研究.建立了小试验疲劳试验与管道实物疲劳试验结果的相关性.该研究结果为管道的抗疲劳设计与评价、在役管道疲劳寿命的预测和检测周期的确定提供了依据.  相似文献   

4.
油气管道一旦发生泄漏失效容易引发爆炸等灾难性事故,而管路中的弯管段是容易发生失效的部分,弯管段承载能力的高低将影响整个管道系统的安全性。为了解决油气管线中弯管的失效问题,考虑几何和材料非线性,建立内压作用下含体积型缺陷弯管的有限元模型,并与爆破试验结果对比验证模型的有效性,确定管道的失效判定准则。研究表明影响弯管极限载荷的主要因素有缺陷的几何尺寸、相对位置以及弯曲半径。基于模拟计算,讨论各因素对含缺陷弯管极限载荷的影响规律,通过对计算结果进行非线性拟合,提出内压作用下含体积型缺陷弯管的极限内压预测公式。该公式将为含缺陷弯管的剩余强度评价和完整性评价提供一定依据。  相似文献   

5.
干燥罐是天然气加气站内核心设备。在定期检验中发现大量环向分布的表面裂纹缺陷,深度1mm~3mm不等。对裂纹部位取样分析,分别通过化学成分分析、金相分析、硬度检测,探讨裂纹形成原因。分析结果表明钢管热轧成型导致微裂纹萌生;容器制造时的热处理为微裂纹扩展提供了条件;容器使用过程中的疲劳工况导致了裂纹的扩展。最后从设计、制造、检验三方面提出了合理建议。  相似文献   

6.
建立了埋地含缺陷聚乙烯管道模型,应用有限元方法计算管道的应力和变形量,分别考虑管道内压、地面载荷和管道缺陷深度变化对管道应力和变形的影响。研究结果表明,管道最大应力随管道内压的增大而增大;随地面载荷的增加呈先减小后增大趋势;随管道缺陷深度增大而增大。管道变形量随内压增大而增大,但增长较小;随地面载荷增大而增大,增长较大;管道缺陷深度只对管道缺陷处变形量有影响。研究结果为确定城镇燃气聚乙烯管道工作能力提供了理论依据。  相似文献   

7.
为解决椭球体、圆柱体和矩形体施痕物产生的管道凹痕缺陷问题,应用ANSYS有限元软件建立施痕物作用于管道的三维模型。通过求解模型,分析凹痕深度、施痕物尺寸和管道壁厚改变时管道凹痕处最大残余应力的变化规律,拟合出残余应力与各参数关系表达式。研究结果表明:3种施痕物下管道凹痕处残余应力随着凹痕深度和管道壁厚的增加而增大,椭球体施痕物下管道凹痕处残余应力随着施痕物尺寸的增加而增大,圆柱体和矩形体施痕物则恰好相反;施痕物为椭球体或圆柱体,采用幂函数拟合残余应力与各参数关系表达式效果较好;施痕物为矩形体,采用指数函数拟合残余应力与各参数的关系表达式效果较好。  相似文献   

8.
为了解决长输管道深凹陷所导致的清管器及内检测器难以通过的工程问题,基于局部提高管道内压可使凹陷回圆、深度减小以达到清管器或检测器可通过深度门槛值的思想,建立了内压作用下管道凹陷回圆过程非线性有限元模型;提出了管道凹陷回圆系数的定义;通过应力应变响应分析对凹陷回圆过程的安全性进行论证;对回圆系数的影响因素进行分析,探讨径厚比、管材、凹陷尺寸、初始内压、回圆压力等参数对回圆系数的影响;基于有限元计算算例,采用非线性回归的方法拟合了凹陷回圆系数工程计算公式。研究结果表明:在极限回圆压力工况下,凹陷回圆过程中管道未发生二次塑性损伤;误差分析显示拟合所得公式预测精度较好,可用于长输管道凹陷的回圆评价。  相似文献   

9.
将单轴蠕变试验、紧凑试样试验得到的材料常数视为随机变量,考虑高温主蒸汽管道运行压力的波动规律,通过对处于高温条件下裂纹萌生和扩展的深入研究,提出电厂高温蒸汽管道失效可能性数学模型,通过Monte carlo方法计算得到初始裂纹检测结果的失效概率.给出了失效概率计算的应用实例,验证了此方法的适用性,为含缺陷高温主蒸汽管道失效可能性评估提供参考.  相似文献   

10.
为分析埋地含缺陷PE管道在交通荷载作用下的力学行为,选用Prony级数模拟管道,并采用ABAQUS有限元软件建立不同缺陷PE80管道模型和不同埋深的管土模型。通过对管道轴向与环向应力的研究,确定不同条件下管道的应力大小与分布。结果表明:当管道存在缺陷时,缺陷处会出现应力突变;不同位置的缺陷对管道的应力分布影响不同;缺陷相对深度改变会使缺陷处应力变化明显,通过建立多元回归方程得出对缺陷管道最大Von Mises应力影响程度为,缺陷相对深度(Q)>管道埋深(H)>车辆荷载(P)。  相似文献   

11.
为了研究腐蚀及地面运动对埋地天然气管线安全性的协同影响,以X80管道为研 究对象,模拟腐蚀缺陷及土壤力作用于管道之上,利用有限元方法对有腐蚀缺陷与预应 变情况下的管道局部等效应力及塑性变形进行评估,结果表明腐蚀缺陷的深度对局部应 力和应力分布影响非常明显,在失效压力预测中起着决定性作用。随着腐蚀深度的增加 ,应力集中增强,导致内表面和外表面的等效应力大小进一步分化,腐蚀深度的增加对 管道内表面的等效应力的影响很大,但对有效塑性应变的影响却不大。模拟管道上施加 有纵向应变的土壤力,不论拉伸与压缩的情况下,都会降低管道的失效压力,在施加拉 伸预应变下的管道失效压力小于压缩预应变下的。塑性变形首先发生在外表面处,并扩 展到腐蚀缺陷相邻区域,管道内表面也具有一定的塑性变形,但强度低。  相似文献   

12.
未焊透缺陷是压力管道焊接接头常见的一种缺陷,严重时可导致管道的承载能力明显降低,进而引发严重的安全事故。为了研究未焊透缺陷对管道安全性的影响,提出了采用非线性有限元分析方法,对含未焊透缺陷压力管道的影响因素进行简化,通过研究其极限内压和极限弯矩随未焊透深度、环向长度等影响因素的变化规律,进一步获得了单一载荷作用下的含未焊透缺陷压力管道的极限载荷估算公式和极限载荷曲线簇。最终在试验验证基础上建立一种未焊透管道的安全评价方法,并通过试验验证结果表明该方法可用于含缺陷工业管道的安全评定是可行的。  相似文献   

13.
为研究含腐蚀缺陷原油集输管道的剩余强度,以延长油田集输系统常用的20#管线钢为例,采用ABAQUS建立1/2腐蚀管道有限元模型,研究单个均匀腐蚀缺陷对集输管道剩余强度的影响,分析缺陷位置、缺陷长度、缺陷宽度和缺陷深度的影响规律,并采用Matlab对缺陷长度和缺陷宽度角的模拟结果进行拟合,拟合确定系数R2均达99.0%以上。结果表明:集输管道的剩余强度受缺陷位置的影响较小;随着缺陷长度的增加先减小后保持不变,随着缺陷宽度的增加先略微增加后保持不变,建立缺陷深度分别为1.5,2.0,2.5 mm的有限元模型,得到缺陷临界长度分别为210,140,130 mm,缺陷宽度角分别为56°,57°,141°;剩余强度受缺陷深度的影响最大,会随着缺陷深度的增加而减小;缺陷深度越大,缺陷长度和缺陷宽度对剩余强度的影响越大。  相似文献   

14.
针对大口径埋地输气管道发生物理爆炸对并行含体积缺陷邻管的冲击行为,利用LS-DYNA和LS-PREPOST有限元软件建立基于光滑粒子流体动力学-有限单元法的管-土-炸药耦合模型,分析不同缺陷深度、不同缺陷表面积、不同缺陷位置和不同爆心距下邻管的动力响应;基于爆腔预估公式和峰值振速经验公式,验证了所建耦合模型的可靠性,并通过设计算例开展多工况分析。研究结果表明:迎爆面上的缺陷处为动力响应的热点区域,最大响应特征值(应力、位移与振速)位于缺陷中心处,随缺陷深度的增加或管间距的减小特征值增速由平缓到急剧;相比缺陷位置和表面尺寸对管道的扰动程度,缺陷深度和爆心距对管道的动力响应影响较大;在本研究的条件下,建议埋地并行输气管道的安全间距不应小于5.16 m,且腐蚀深度不大于管道壁厚的0.633 6倍。研究结果可为埋地输气管道极端灾害下的风险评估提供技术支撑,为并行管道可能的抗爆隔爆设计提供模拟数据支持。  相似文献   

15.
为了探讨爆破和降雨对边坡失稳的影响,基于边坡实际结构,提出了将滑面分为后缘张拉裂缝段、中部锁固段、下部剪切滑动段。利用断裂力学理论,分析了爆破和降雨双重工况下的裂缝起裂扩展判据。基于格里菲斯(Griffith)能量准则,推导了边坡滑动块断裂后沿底滑面的剧动距离。通过实例验证了理论计算的可行性和适用性,研究结果表明:边坡表面裂缝起裂的根本动力为降雨、爆破以及二者的共同作用;在一定外力条件下,裂缝起裂扩展存在最小临界深度;降雨和爆破共同作用时,裂缝扩展临界深度最小;中部锁固段长度为控制边坡失稳的关键因素;降雨并不能使裂缝扩展,预知裂缝深度时,可通过控制爆破药量来控制边坡失稳。  相似文献   

16.
Due to local liquid accumulation (AL) in the low-lying section of the buried natural gas pipeline, external corrosion will occur at the interface between the pipeline and the soil. External corrosion will produce pit defects, which will reduce the bearing capacity of the pipeline and affect the normal operation of the pipeline. In addition, corrosion group defects can interact with each other. Thus, the service life of the pipeline is seriously affected. In this work, a case of local corrosion failure of the pipeline caused by liquid accumulation on-site is presented. The importance of this work is verified by experiment and field excavation. Besides, based on the Mises-Stress yield criterion, nonlinear analysis was carried out with the finite element method (FEM). The effects of internal pressure, corrosion pit defect size, internal and external wall corrosion, corrosion pit group, and different types of volumetric corrosion pit defects on the failure of L360QS steel pipe were analyzed with consideration of the effects of axial and circumferential zones of corrosion pits. These correlations have not been seen in previous studies. The FE results make up for the disadvantage that the corrosion is simplified to equal depth corrosion in the code, which will underestimate the residual strength of the actual corroded pipeline and lead to unnecessary repair or replacement. The results provide a reference for failure analysis and strength evaluation of buried L360QS steel pipe with corrosion defect.  相似文献   

17.
含有腐蚀缺陷油管在复杂的工作荷载下容易发生失效。建立了在内压与轴向力共同作用的复杂工作载荷下,含椭球型蚀坑缺陷与轴向沟槽型缺陷两种腐蚀缺陷的油管有限元模型。基于该模型研究了不同载荷工况下缺陷宽度、深度与长度对油管安全性及失效模式的影响。研究结果表明:腐蚀位置深度较浅时,椭球型蚀坑缺陷更危险,油管主要发生由轴力引发的断裂失效;腐蚀位置深度较深时,轴向沟槽型缺陷更危险,主要发生由内压引发的破裂失效。研究成果可为含腐蚀缺陷油管的安全评估提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号