首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究瓦斯对煤体力学特性的影响,设计不同瓦斯压力条件下煤体单轴压缩试验,研究煤样力学参数及变形特征随瓦斯压力的变化趋势,探讨瓦斯对煤体力学性质的影响机制,得出单轴压缩下煤样力学参数,并记录煤样的破坏形态。研究结果表明:随瓦斯压力增大,应力-应变曲线压实阶段增大,弹性阶段缩小,失稳破坏后曲线缓慢下降,抗压强度和弹性模量单调减小,峰值应变单调增大;不含瓦斯煤样受载破坏产生的裂纹较为单一,含瓦斯煤样受载破坏后出现明显主裂纹及多向分叉裂纹,并出现局部煤体脱落现象。  相似文献   

2.
为获得不同推进速度下煤岩体的采动力学行为特征,通过轴压和围压分别模拟不同推进速度下垂直应力、水平应力,采用增轴压降围压的方式模拟煤岩体的采动力学行为,同时采用数值模拟和工程实践相结合的方法对不同推进速度下煤岩体的采动力学行为进行研究。结果表明:在围压卸载速率相同的条件下,随着轴压加载速率(推进速度)的增加,煤体的峰值强度、轴向应变和横向应变呈增大趋势,在峰值阶段产生了较大的轴向应变和横向应变,呈现出一定的延性,破坏形式具有塑性特征;在轴向加载和围压卸载的综合作用下,煤体体积一直处于膨胀变形状态,围压的卸载加速了煤体损伤破坏的进程,煤体破坏时的峰值应力和体积扩容受控于围压卸载的程度,控制轴压加载速率和围压卸载程度可控制煤体破坏时的峰值应力和体积变形。生产实践中,应结合煤岩体的采动力学行为特征,确定合理的推进速度并加以控制,以保证回采巷道与采场围岩的稳定性。  相似文献   

3.
为探究采动应力变化对含瓦斯突出煤力学特性的影响,利用RLW-500G煤岩三轴蠕变-渗流试验系统,对新景矿含瓦斯突出煤进行了不同围压和瓦斯压力下的常规三轴和分段变速加载力学试验。结果表明:煤样在2种应力路径下的全应力应变曲线均可分为压密、线弹性、塑性变形、应力跌落和残余应力5个阶段;随着围压的升高或者瓦斯压力的降低,煤体在2种应力路径下的强度和弹性模量均增大;相较于常规三轴,煤体在分段变速加载路径下的强度普遍增大,峰值轴向应变、峰值环向应变绝对值和峰值体积应变绝对值也普遍增大,失稳破坏瞬间应力跌落和能量释放更加剧烈。Mohr-Coulomb强度准则仍然适用于分段变速加载条件下的含瓦斯突出煤,该研究对于认识煤与瓦斯突出的发生机制具有一定的指导意义。  相似文献   

4.
为揭示煤与瓦斯突出灾害机理,综合考虑地应力和瓦斯压力对煤体力学特性的影响,采用有效应力进行分析。在不同围压、不同瓦斯压力条件下进行煤体受载破裂试验,综合分析围压、瓦斯压力和有效应力对煤体力学特性影响。结果表明:围压载荷使煤体抵抗变形能力变强,瓦斯压力载荷使煤体抵抗变形能力变弱;有效应力相同时,煤体压密效果相同,只受到围压作用的煤体单轴抗压强度高、弹性模量低,达到峰值应力后抵抗变形能力强;同时受到围压载荷和瓦斯压力载荷,且有效应力相同时,煤体压密阶段和弹性变形阶段具有相同的压密效果、弹性模量和单轴抗压强度。对井下煤体进行有效应力分析,可以简化力学模型,为分析井下煤岩力学状态提供方法。  相似文献   

5.
为研究煤体剪切破坏过程中的电荷感应规律,基于变角板法对某矿区煤体在不同剪切角度破坏下进行电荷监测,探究了煤体在剪切破坏过程中的力-电感应变化规律。结果表明:随剪切角增大,煤体发生剪切破坏的强度逐渐减弱,失稳破坏形式由压剪破坏向张拉破坏过渡;煤体剪切破坏过程中有显著电荷感应信号产生,电荷信号异常区域对应于剪应力突变阶段;随剪切角增大,煤体应力峰值前电荷信号逐渐减少并不断向剪应力峰值附近集中,剪应力峰值前累计的电荷量也逐渐减少;提出了煤体剪切破坏过程中产生电荷的机理主要为摩擦作用的观点;电荷感应信号峰值在剪应力达到极限强度之前出现,电荷信号峰值比剪应力峰值提前出现时间随剪切角度增加有减短趋势;在首次出现电荷峰值信号之后短时间内煤体将发生较大幅度的应力跌落过程;可以以电荷信号峰值的出现为基点来预测煤体将要发生变形破坏及通过电荷信号的整体分布特征来揭示煤体剪切破坏规律。  相似文献   

6.
为探究煤体在受压过程中的能量特征及临界破坏点能量变化规律,基于常规三轴压缩下含瓦斯煤的应力-应变曲线,分析含瓦斯煤破坏过程中弹性应变能和耗散能随应变变化的规律,据此给出含瓦斯煤在不同围压、含水率下变形破坏时的能量解释。研究结果表明:有效能比在同一围压下随着含水率的增大先增加后减小,表明含水率的增大会降低煤样强度。建立围压和含水率对含瓦斯煤三轴压缩变形过程中临界破坏点总能量耦合关系的多元线性回归方程,取得了较好的拟合度。  相似文献   

7.
为有效预防煤岩动力灾害,利用含瓦斯煤热-流-固耦合三轴伺服渗流试验装置对煤岩进行三轴压缩试验,研究三轴应力下煤岩的变形破坏特征及损伤过程中的能量演化机制;建立煤岩损伤本构模型;构建损伤-能量耦合数学表达式。结果表明:不同围压下煤岩偏应力-应变曲线的变化趋势基本一致;煤岩在变形破坏过程中,能量转换形式随变形破坏规律呈现阶段性变化;围压对煤岩的能耗特征有较大的影响,煤岩吸收的总能量、弹性能、耗散能的增长速率均随围压的增大而增大,且在峰值偏应力点处,随着围压的增大,临界破坏点总能量、储能极限、临界破坏点耗散能线性增大;能量耗散是造成煤岩内部结构产生损伤的主要原因,耗散能随损伤变量的增大总体上呈S型变化。  相似文献   

8.
为研究煤层赋存条件对煤与瓦斯突出危险性的影响,模拟分析不同条件(埋藏深度、煤层厚度和煤体强度)下的应力、瓦斯压力和煤体塑性变形区的分布及变化。结果表明,随埋藏深度的增加,工作面前方应力峰值及应力梯度、瓦斯压力梯度、塑性变形区及塑性应变量等随之增大,煤与瓦斯突出的危险性越来越高;随煤层厚度的增加,工作面应力峰值、应力梯度逐渐减小,出现应力峰值的位置越远离工作面,瓦斯卸压带、瓦斯排放带、塑性变形区越逐渐增大,煤与瓦斯突出的危险性越来越小;随煤体强度的升高,工作面前方应力梯度、瓦斯压力梯度随之增大,塑性变形区和塑性应变值随之减小,煤与瓦斯突出危险性越来越小。  相似文献   

9.
张学博      高建良     《中国安全生产科学技术》2017,13(8):152-158
为了研究深部开采松软煤层抽采钻孔变形失稳特性,基于有限元理论和统计损伤理论数值模拟了深部开采松软煤层抽采钻孔变形失稳整个过程,分析了钻孔周围煤体应力及形变分布、卸压区演化和渗透特性。研究表明:钻孔破坏形式为上方发生垮塌,形成垮塌区;左右侧发生破坏,形成破碎区;钻孔周围煤体均向钻孔移动,钻孔附近煤体位移量较大,远处煤体位移量相对较小;钻孔形状由开始的圆形逐渐变成“类橄榄球形”,然后钻孔“类橄榄球形”断面逐渐减小至坍塌。钻孔失稳过程中,钻孔附近煤体渗透率逐渐增大,钻孔周围煤体渗透率变化量及变化范围均不断增加;周围煤体渗透率分布均大致呈“V”字型变化规律,即煤体渗透率呈随着距钻孔距离的增加先减小后增加然后趋于稳定的趋势。研究结果可以为我国煤矿深部开采松软煤层瓦斯治理和煤层瓦斯抽采提供理论支撑,具有指导性意义。  相似文献   

10.
针对破碎煤体顺层钻孔成孔测压困难的问题,提出了再生孔壁密封测压方法。该方法的思想是在破碎煤体中先打大直径钻孔,采用注浆法充填钻孔周边裂隙,固化孔壁煤体后,再成孔密封测压。现场应用表明:再生孔壁的密封性较好,成功实现了顺层钻孔压力的测试,钻孔压力能维持较长的时间不下降。该方法为松软煤体顺层钻孔测压提供了借鉴。  相似文献   

11.
为探究冷冻取芯过程煤芯瓦斯解吸特性,基于模拟试验的相似性,依托自主研发的含瓦斯煤冷冻取芯响应特性测试平台,开展不同变质程度煤样(长焰煤、贫瘦煤、无烟煤)及不同吸附平衡压力(1.0,2.0,3.0,4.0 MPa)下冷冻取芯过程煤芯瓦斯解吸特性试验研究。研究结果表明:冷冻取芯过程中,煤芯瓦斯解吸量与吸附平衡压力及煤变质程度呈正相关关系;在煤芯瓦斯解吸过程中存在倒吸现象,煤与瓦斯初始吸附平衡压力越大,煤的变质程度越高,倒吸开始时间越迟;冷冻取芯过程中,瓦斯解吸速度与吸附平衡压力及煤变质程度呈正相关关系,且瓦斯解吸速度随吸附平衡压力及煤变质程度变化曲线符合幂函数关系。  相似文献   

12.
为研究渗透压力作用下岩石承载过程中的变形特性,采用GDS-VIS三轴流变仪对红砂岩开展渗透压力作用下的三轴压缩试验,研究各渗透压力作用下偏应力加载过程中岩石轴向应变、径向应变和变形模量的变化规律。结果表明:随渗压增大,岩石峰值应力减小,岩石破坏时对应的轴向应变的变化幅度较小,而径向应变的变化幅度则较大;随渗压增加,岩石对应的各承载阶段的变形模量相对减小,最大变形模量也出现不同程度的降低,同时最大变形模量对应的轴向应变有后移趋势;随偏应力增加,变形模量逐渐增大,并在弹性变形阶段后期出现最大值,整个过程中轴向应变逐渐增加,径向应变则在变形模量最大值出现后才明显增大,说明与轴向应变相比径向应变更能够反映出岩石承载过程变形模量的减小和强度的降低。研究结果为探讨类似岩石渗透压力作用下的变形和强度特性提供参考。  相似文献   

13.
煤层钻孔失稳机理研究进展   总被引:2,自引:0,他引:2  
高瓦斯松软煤层、软硬复合煤层和突出煤层深孔钻进是公认的世界性难题,已成为制约部分高瓦斯和突出矿井瓦斯治理效果的瓶颈。尽管众多研究者在钻孔施工装备及工艺的改进方面开展了大量卓有成效的工作,但因煤层钻孔失稳机理尚未完全揭示,钻孔成孔工艺缺乏理论支撑,上述难题至今仍未破解。从煤体结构判识及分类、含流体煤力学特性、失稳机理三方面入手,系统介绍了煤层钻孔失稳机理的研究进展,探讨了该领域亟待解决的问题;最后指出,含流体煤卸载过程中,煤层钻孔在流-固-应力耦合作用下的失稳破坏机制研究,是破解煤层深孔钻进难题的重点方向之一。  相似文献   

14.
为探究瓦斯压力、围岩应力变化引起煤体变形规律,利用自行研制的应力-渗流-解吸煤体变形试验装置,以铁新煤矿9号煤为研究对象,开展应力、渗流作用下煤体变形试验,根据试验结果分析围压和孔隙压力对煤体变形影响的显著程度。结果表明:围压自15 MPa起,在以2 MPa/次梯度递减至5 MPa的过程中,煤体的径向应变呈线性减小,纵向应变呈线性增加趋势;围压为定值时,煤体变形与孔隙压力的关系满足二次函数;煤体径向变形和孔隙压力、围压的关系满足二元二次函数,且围压对煤体变形的影响比孔隙压力更显著。  相似文献   

15.
为深入探究不同瓦斯吸附压作用下的煤岩力学行为及声-电荷反演规律,完善冲击-突出复合灾害的预测预警方法,以阜新孙家湾矿168工作面煤样为研究对象,利用载荷-声-电-应变复合监测系统对不同瓦斯吸附压力作用下的试样的力学特性、破坏特征、冲击-突出特征及声-电信号反演进行试验研究。结果表明:随瓦斯吸附压力增大,瓦斯煤岩冲击倾向指标均降低,应力峰前调整逐渐增多,煤岩峰值破坏时间延长,煤体内部损伤、软化程度及破碎程度升高,煤体动力灾害存在冲击向突出转化的可能;监测获得的声-电荷高幅值信号在时间序列上与煤体应力状态呈现较好对应关系,能够反演瓦斯煤岩的力学特征。  相似文献   

16.
为研究煤矿开采钻进过程中构造煤瓦斯涌出量随钻进深度的变化特性,以薛湖煤矿2104运输巷掘进工作面为试验研究对象,采用自主研制的连续流量法预测系统中瓦斯流量情况,测定钻孔瓦斯涌出量及钻进深度数据;根据初始瓦斯涌出量变化趋势,预测钻孔前方构造煤的位置。研究结果表明:在原生结构煤体中钻进时,钻孔瓦斯涌出量随钻进深度增加而增大,钻孔瓦斯涌出曲线平稳;钻进到构造煤时,钻孔瓦斯涌出量迅速增加、曲线变陡;钻进为9. 9 m时,钻孔瓦斯涌出量出现突变点; 10. 2 m时,瓦斯涌出量达到最大值,为89. 9 L/min,是正常值的2. 05倍;以3号钻孔为例,采掘活动验证了该预测方法的准确性和精度。  相似文献   

17.
为了研究煤体受压变形破坏情况,采用近场动力学理论、室内单轴压缩实验及数值模拟相结合的方式,演绎推导PD损伤本构力函数,分别在宏、微观2个方面对煤体损伤规律进行研究。研究结果表明:以近场动力学所推导的本构力函数对于复杂裂隙演化过程的研究具有独特优势,煤体受到外荷载作用后内部微结构会产生不同程度的损伤,损伤过程可分为:压密阶段、微裂纹的萌生扩展阶段、断裂破坏阶段;压密阶段后均伴随键的断裂,至破坏阶段时,键几乎完全断裂,导致煤样宏观失稳破坏;模拟模型在受到外载荷作用下,内部能量开始聚集,随着压力的增大,内部能量散开,最终呈“X”型分布,这与实验加载后煤样的损伤效果基本一致,以此来反演煤体内部微结构变化从而得到煤体损伤规律切实可行。  相似文献   

18.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

19.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

20.
基于有效应力原理分析了煤体吸附瓦斯对煤体强度的影响,提出应用煤体单轴抗压强度衰减比k_σ表征瓦斯压力变化对煤体强度的影响;应用数值分析方法研究了煤体瓦斯抽采前后煤壁前方煤体应力、屈服破坏范围的变化。结果表明,抽采期间,煤壁前方煤体应力峰值处于"动态移动"状态,致使煤壁前方的屈服破坏区间同时发生移动,水泥封孔段由受压转为应力卸载状态而发生膨胀破坏,在封孔段水泥与煤壁之间形成松动漏气通道,孔外空气将沿该漏气通道进入孔内,使抽采浓度降低。为提高带压封孔方法的封孔效果,应科学判定抽采前期煤体应力峰值区间,并考虑抽采期间煤体"应力峰值移动"的影响,在应力峰值区间适当向两侧延伸封孔段长度,注重封孔器材和封孔材料的研制和选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号