首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Structure of flames propagating through aluminum particles clouds and combustion processes of the particles have been examined experimentally to understand the fundamental behavior of a metal dust explosion. The combustion process of individual aluminum particles in a flame propagating through the aluminum particles cloud has been recorded by using a high-speed video camera with a microscopic optical system, and analyzed. The flame is shown to be consisted of a preheat zone of about 3 mm thick, followed by a combustion zone of 5–7 mm thick. In the combustion zone, discrete gas phase flames are observed around each aluminum particle. Also an asymmetric flame around a particle is observed, which might be caused by an ejection of aluminum vapor from a crack of oxide shell surrounding the particle.  相似文献   

2.
Flame propagation behaviors of nano- and micro-polymethyl methacrylate (PMMA) dust explosions were experimentally studied in the open-space dust explosion apparatus. High-speed photography with normal and microscopic lenses were used to record the particle combustion behaviors and flame microstructures. Simple physical models were developed to explore the flame propagation mechanisms. High-speed photographs showed two distinct flame propagation behaviors of nano- and micro-PMMA dust explosions. For nano-particles, flame was characterized by a regular spherical shape and spatially continuous combustion structure combined with a number of luminous spot flames. The flame propagation mechanism was similar to that of a premixed gas flame coupled with solid surface combustion of the agglomerates. In comparison, for micro-particles, flame was characterized by clusters of flames and the irregular flame front, which was inferred to be composed of the diffusion flame accompanying the local premixed flame. It was indicated that smaller particles maintained the leading part of the propagating flame and governed the combustion process of PMMA dust clouds. Increasing the mass densities from 105 g/m3 to 217 g/m3 for 100 nm PMMA particles, and from 72 g/m3 to 170 g/m3 for 30 μm PMMA particles, the flame luminous intensity, scale and the average propagation velocity were enhanced. Besides, the flame front became more irregular for 30 μm PMMA dust clouds.  相似文献   

3.
Behaviors of particles across upward and downward flame propagating through iron particle clouds have been recorded on photomicrographs by using a high-speed video camera with a microscopic optical system. The velocity profiles of iron particles across flames were measured by using the high-speed photomicrographs, and the number density profiles of iron particles near the flames were calculated by using the velocity profiles. It is shown that the number density of iron particles changes in the range of x smaller than 11.0 mm, where x is the distance from the leading edge of the combustion zone. The number density increases with the decrease of x in the range 0<x<11.0 mm, reaches a maximum at leading edge of the combustion zone, and then decreases. For upward propagating flame, the maximum value of the number density is about 3.5 times larger than that at the region far ahead of the flame (x>10.0 mm), however, for downward propagating flame, it is only 2.3 times larger than that at the region far ahead of the flame.  相似文献   

4.
Reaction zone structures and propagation mechanisms of two representative flames established in stearic acid (CH3(CH2)16CO2H) particle clouds have been investigated. The reacting zone structure was examined by using a micro-electrostatic probe and a high-speed schlieren system. A distinct difference was observed in the ion current fluctuations recorded across the two representative flames propagating through the clouds of the same total mass density of particles and different mass densities of the particles smaller than 60 μm in diameter. When the mass density of smaller particles was high, a single peak was recorded in the ion current fluctuation. On the other hand, when the mass density of smaller particles was low, multi-peaks of various heights and widths were recorded. In the former case, the single peak was considered to be attributable to a unitary and a relatively thin flame started burning in vapor generated by the evaporation of smaller particles in the preheat zone. The flame propagation mechanism in this case was inferred to be similar to that of a usual hydrocarbon–air premixed flame, although the reaction zone thickness is much larger than that of the premixed flame. In the latter case, the multi peaks of various shapes were considered to be attributable to strong combustion at blue spots far behind the schlieren front. The flame propagation in this case was inferred to be supported by the heat release due to combustion at the blue spots.  相似文献   

5.
Correlating turbulent burning velocity to turbulence intensity and basic flame parameters-like laminar burning velocity for dust air mixtures is not only a scientific challenge but also of practical importance for the modelling of dust flame propagation in industrial facilities and choice of adequate safety strategy. The open tube method has been implemented to measure laminar and turbulent burning velocities at laboratory scale for turbulence intensities in the range of a few m/s. Special care has been given to the experimental technique so that a direct access to the desired parameters was possible minimising interpretation difficulties. In particular, the flame is propagating freely, the flame velocity is directly accessible by visualisation and the turbulence intensity is measured at the flame front during flame propagation with special aerodynamic probes. In the present paper, those achievements are briefly recalled. In addition, a complete set of experiments for diametrically opposed dusts, starch and aluminium, has been performed and is presented hereafter. The experimental data, measured for potato dust air mixtures seem to be in accordance with the Bray Gülder model in the range of 1.5 m/s<u′<3.5 m/s. For a further confirmation, the measurement range has been extended to lower levels of turbulence of u′<1.5 m/s. This could be achieved by changing the mode of preparation of the dust air mixture. In former tests, the particles have been injected into the tube from a pressurised dust reservoir; for the lower turbulence range, the particles have been inserted into the tube from above by means of a sieve–riddler system, and the turbulence generated from the pressurised gas reservoir as before. For higher levels of turbulence, aluminium air mixtures have been investigated using the particle injection mode with pressurised dust reservoir. Due to high burning rates much higher flame speeds than for potato dusts of up to 23 m/s have been obtained.  相似文献   

6.
It is important to sufficiently understand the phenomena during the dust explosions in order to take appropriate measures preventing dust explosion accidents. However, at present basic knowledge on flame propagation mechanisms during dust explosions is not enough. In this study, therefore, the flame propagation mechanisms during dust explosions are examined by detailed analyses using a special observation at UV band. Small scale experiments were performed to analyze flame propagating processes in detail. In the experiments, the stearic acid was used as the combustible particle, suspended particles were ignited by an electric spark, and flame propagation through the combustible dust was observed by using a special observation system at UV band. The leading combustion zone is observed to consist of discrete burning blue spot flames by the observation using ordinary photograph system. It is questionable how the leading flame of such discrete structure propagates. In this study, high-speed video images at UV band through a band-pass filter were taken to detect OH emission from combustion reaction zone. Using this method, the propagating flame could be detected clearly and the flame propagation mechanism could be examined in detail. In the conditions performed in this study, discrete flame propagation was not observed and the leading flame was observed to propagate continuously. This result is of importance for understanding the flame propagation phenomena during dust explosion.  相似文献   

7.
路长  李毅  潘荣锟 《火灾科学》2015,24(2):68-74
为研究管道截面对氢气/空气预混火焰形状与传播速度的影响,选用三个长度都为1m而截面尺寸不同的方形管道进行实验。实验结果表明,在截面为80mm×80mm的管道中,四种氢气浓度下预混火焰都发展形成了郁金香火焰。火焰传播速度呈现上升,下降,再上升的波动。在截面为100mm×100mm和150mm×150mm的管道中,只有在氢气浓度20%下形成郁金香火焰,并且传播速度也出现上述的波动。而在氢气浓度25%,30%,40%下,预混火焰都呈指尖形传至管口,未出现郁金香火焰,传播速度都是不断上升。三个管道对比中,截面为100mm×100mm的管道内火焰平均传播速度最快,且压力波第一峰值最大。  相似文献   

8.
The current work examines regimes of the hydrogen–oxygen flame propagation and ignition of mixtures heated by radiation emitted from the flame. The gaseous phase is assumed to be transparent for the radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. It is shown that depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the mixture ahead of the flame can be either the increase of the flame velocity for uniformly dispersed particles or ignition either new deflagration or detonation ahead of the original flame via the Zel'dovich gradient mechanism in the case of a layered particle-gas cloud deposits. In the latter case the ignited combustion regime depends on the radiation absorption length and correspondingly on the steepness of the formed temperature gradient in the preignition zone that can be treated independently of the primary flame. The impact of radiation heat transfer in a particle-laden flame is of paramount importance for better risk assessment and represents a route for understanding of dust explosion origin.  相似文献   

9.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   

10.
The majority of experimental tests done on combustible dusts are performed in constant volume vessels that have limited or no optical access. Over the years, McGill University has been developing alternative experimental techniques based on direct observation of dust flames, yielding reliable fundamental parameters such as flame burning velocity, temperature and structure. The present work describes two new experimental set-ups allowing direct observation of isobaric and freely propagating dust flames at two sufficiently different scales to test the influence of scale on dust flame phenomena. In the laboratory-scale experiments, a few grams of aluminum powder are dispersed in transparent, 30 cm diameter latex balloons that allow for full visualization of the spherical flame propagation. In the field experiments, about 1 kg of aluminum powder is dispersed by a short pulse of air, forming a conical dust cloud with a total volume of about 5 m3. High-speed digital imaging is used to record the particle dispersal and flame propagation in both configurations. In the small-scale laboratory tests, the measured flame speed is found to be about 2.0 ± 0.2 m/s in fuel-rich aluminium clouds. The burning velocity, calculated by dividing the measured flame speed by the expansion factor deduced from thermodynamic equilibrium calculations, correlates well with the previously measured burning velocity of about 22–24 cm/s from Bunsen dust flames. Flame speeds observed in field experiments with large-scale clouds, however, are found to be much higher, in the range of 12 ± 2 m/s. Estimations are presented that show that the presumably greater role of radiative heat transfer in larger-scale aluminium flames is insufficient to explain the six-fold increase in flame speed. The role of residual large-eddy turbulence, as well as the frozen-turbulence effect leading to large-scale dust concentration fluctuations that cause flame folding, are discussed as two possible sources for the greater flame speed.  相似文献   

11.
Multidimensional time-dependent simulations were performed to study the interaction of a stoichiometric methane–air detonation with layers of coal dust. The simulations solved equations representing a Eulerian kinetic-theory-based granular multiphase model applicable to dense and dilute particle volume fractions. These equations were solved using a high-order Godunov-based method for compressible fluid dynamics. Two dust layer concentrations were considered: loose with an initial volume fraction of 1%, and dense with an initial volume fraction of 47%. Each layer was simulated with two types of dust: reactive coal and inert ash. Burning of the coal particles results in a coupled complex consisting of an accelerating shock leading a coal-dust flame. The overall structure of the shock–flame complex resembles that of a premixed fast flame with length scales on the order of several meters. The large length scales are direct results of time needed to lift, mix, heat, and autoignite the particle. The flame speeds are large and much larger than the gas-phase velocity. Large spikes of flame speed are characteristic of the 47% case. These spikes and high flame speed are caused by pockets of coal dust autoigniting ahead of the flame. The flame is choked in the 1% case due to the gas-phase products exceeding the sonic velocity with respect to the flame. The 47% case is choked due to attenuation of pressure waves as they propagate through particles. Inert layers of dust substantially reduce the overpressure, impulse, and speed produced by propagating blast wave. The results also show that loose layers of dust are far more dangerous than dense layers. The shock and flame are more strongly coupled for loose layers, propagate at higher velocity, and produce large overpressures and impulses.  相似文献   

12.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

13.
This article has investigated the propagation and extinction of aluminum dust cloud flame in a narrow channel. The burned and burning dust particles act as heat sources and the channel walls act as heat sinks. In this method, discrete heat source has been used to analyze dust combustion in a narrow channel. Using the superposition of sources and sinks, the preheat zone temperature is predicted as an indicator of flame propagation or extinction. Dust concentration and channel width are two major parameters which affect the quenching distance and flame propagating speed. Wall temperature affects the heat loss; and by preheating the walls, quenching distance is reduced and flame propagation speed is increased.  相似文献   

14.
To reveal the effects of particle characteristics, including particle thermal characteristics and size distributions, on flame propagation mechanisms during dust explosions clearly, the flame structures of dust clouds formed by different materials and particle size distributions were recorded using an approach combining high-speed photography and a band-pass filter. Two obviously different flame propagation mechanisms were observed in the experiments: kinetics-controlled regime and devolatilization-controlled regime. Kinetics-controlled regime was characterized by a regular shape and spatially continuous combustion zone structure, which was similar to the premixed gas explosions. On the contrary, devolatilization-controlled regime was characterized by a complicated structure that exhibited heterogeneous combustion characteristics, discrete blue luminous spots appeared surrounding the yellow luminous zone. It was also demonstrated experimentally that the flame propagation mechanisms transited from kinetics-controlled to devolatilization-controlled while decreasing the volatility of the materials or increasing the size of the particles. Damköhler number was defined as the ratio of the heating and devolatilization characteristic time to the combustion reaction characteristic time, to reflect the transition of flame propagation mechanisms in dust explosions. It was found that the kinetics-controlled regime and devolatilization-controlled regime can be categorized by whether Damköhler number was less than 1 or larger than 1.  相似文献   

15.
A vented chamber, with internal dimensions of 150 mm × 150 mm × 500 mm, is constructed in which the premixed methane–air deflagration flame, propagating away from the ignition source, interacts with obstacles along its path. Three obstacle configurations with different cross-wise positions are investigated. The cross-wise obstacle positions are found to have significant effects on deflagration characteristics, such as flame structure, flame front location, flame speed, and overpressure transients. The rate of flame acceleration, as the flame passes over the last obstacle, is the highest at the configuration with three centrally located obstacles, whereas the lowest is observed at the configuration with three obstacles mounted on one side of the chamber. Compared with the side configuration, the magnitude of overpressure generated increases by approximately 80% and 165% for the central and staggered configurations, respectively. Furthermore, flame propagation speeds and generated overpressures for both the central and staggered configurations are greater, which should to be avoided to reduce the risk associated with turbulent premixed deflagrations in practical processes.  相似文献   

16.
Flame speeds and rates of pressure rise for gaseous explosions in a 76 mm diameter closed cylindrical vessel of large length to diameter ratio (L/D = 21.6), were quantitatively investigated. Methane, propane, ethylene and hydrogen mixtures with air were studied across their respective flammability ranges. Ignition was affected at one end of the vessel. Very fast flame speeds corresponding to high rates of pressure rise were measured in the initial 5–10% of the total explosion time. During this period 20–35% of the maximum explosion pressure was produced, and over half of the flame propagation distance was completed. Previous work has concentrated on the later stages of this type of explosion; the development of tulip flames, pressure wave effects and transition to turbulence. The initial fast phase is very important and should dominate considerations in pressure relief vent design for vessels of large L/D.  相似文献   

17.
Ducts are often recommended in the design of dust explosion venting in order to discharge materials to safe locations. However, the maximum reduced overpressure increases in a duct-vented vessel rather than in a simply vented vessel. This needs to be studied further for understanding the duct-venting mechanism. Numerous duct-vented dust explosion experiments were conducted, using a 20 L spherical chamber at elevated static activation overpressures, ranging from 1.8 bar to 6 bar. Duct diameters of 15 mm and 28 mm, and duct lengths of 0 m (simply venting), 1 m and 2 m, were selected. Explosion pressures both in the vessel and in the duct were recorded by pressure sensors, with a frequency of 5 kHz. Flame signals in the duct were also obtained by phototransistors. Results indicate that the secondary explosion occurring in the duct increases the maximum reduced overpressure in the vessel. The secondary explosion is greatly affected by the duct diameter and static activation overpressure, and hence influences the amplification of the maximum reduced overpressure. Larger static activation overpressure decreases the severity of the secondary explosion, and hence decreases the increment in the maximum reduced overpressure. The secondary pressure peak is more obvious as the pressure accumulation is easier in a duct with a smaller diameter. However, the increment of the maximum reduced overpressure is smaller because blockage effect, flame front distortion, and turbulent mixing due to secondary explosion are weaker in a narrow duct. The influence of duct length on the maximum reduced overpressure is small at elevated static activation overpressures, ranging from 1.8 bar to 6 bar at 15 mm and 28 mm duct diameters.  相似文献   

18.
Industrial processes are often operated at conditions deviating from atmospheric conditions. Safety relevant parameters normally used for hazard evaluation and classification of combustible dusts are only valid within a very narrow range of pressure, temperature and gas composition. The development of dust explosions and flame propagation under reduced pressure conditions is poorly investigated. Standard laboratory equipment like the 20 l Siwek chamber does not allow investigations at very low pressures. Therefore an experimental device was developed for the investigations on flame propagation and ignition under reduced pressure conditions. Flame propagation was analysed by a video analysis system the actual flame speed was measured by optical sensors. Experiments were carried out with lycopodium at dust concentrations of 100 g/m3, 200 g/m3 and 300 g/m3. It was found that both flame shapes and flame speeds were quite different from those obtained at atmospheric pressure. Effects like buoyancy of hot gases during ignition and flame propagation are less strong than at atmospheric conditions. For the investigated dust concentrations the flame reaches speeds that are nearly an order of a magnitude higher than at ambient conditions.  相似文献   

19.
A series of dust explosion were conducted to compare the flame structure between nano and micron aluminium dusts. Two-color pyrometer technique is applied to have qualitative observation of flame development. Measurement of temperature indicates that explosion in micron aluminium dust clouds start in a single spot at 3000 K, in contrast, explosion in nano aluminium dust clouds start when hot powder accumulated to a certain amount at lower temperature of 2600 K. For micron aluminium dust clouds, flame at leading edge has the highest temperature and propagates in all directions. On the other hand, flame in nano aluminium dust clouds propagate only upward with the hottest part left behind at the downside. As flame propagates, the temperature at top edge gradually decreases from 2600 K to finally 2000 K, but temperature at bottom edge maintains in 3000 K with no significant displacement. The unevenness of flame structure is considered as the consequence of different particle densities, which suggests that the reaction of nano aluminium particles stays in molten state, meanwhile, the high surface area also leads to unignorable heat loss.  相似文献   

20.
An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号