首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
选用农林剩余物加工制得生物炭,用强氧化剂(KMnO_4、H_2O_2、HNO_3)对生物炭进行化学改性,选择最佳改性方法。通过吸附试验得出用0.01 mol/L KMnO_4改性的生物炭除铀效果最佳。采用KMnO_4改性的生物炭对废水中的铀进行吸附,考察吸附剂投加量、溶液pH值、吸附时间、溶液初始质量浓度等因素对U(Ⅵ)去除效果的影响。结果表明,当吸附剂投加量为0.3 g/L、U(Ⅵ)质量浓度为10mg/L、溶液pH=6、温度为25℃、吸附时间为120 min时,改性生物炭对U(Ⅵ)的去除效果最佳,吸附量达到32.57 mg/g,比未改性前提高了67.9%。对改性前后的生物炭进行了SEM、XRD、FTIR表征及表面含氧官能团测定、吸附动力学分析。结果表明,改性生物炭对U(Ⅵ)的吸附过程符合准二级动力学方程及Langmuir等温吸附模型(决定系数R20.99)。这表明对溶液中铀的去除可能是化学沉淀作用的结果,改性后含氧官能团增加,对溶液中铀的去除也可能存在官能团络合作用与表面吸附,使吸附剂化学吸附能力增强,除铀能力提高。  相似文献   

2.
改性沸石吸附氨氮及电化学再生研究   总被引:1,自引:0,他引:1  
研究了改性沸石对氨氮的吸附效能、动力学机制以及电化学再生效果。间歇和连续试验结果表明:沸石经改性后,能高效去除水中的氨氮,其吸附等温式更符合Langmuir模型,沸石、改性沸石的饱和吸附量分别为8.09 mg/g和13.55 mg/g,沸石的钠型改性能显著提高吸附容量约40.3%;颗粒内扩散是改性沸石吸附氨氮的控制性步骤,可以利用Vermeulen的内扩散模型进行描述;利用电化学再生吸附饱和后的沸石,再生液为NaCl溶液,阳极涂覆RuO2-Ti,再生时间为3h,可高效地再生沸石,无二次污染物排出,对环境冲击较小。  相似文献   

3.
水体中氨氮的过量容易导致水体富营养化,对自然环境造成极大的破坏。以磷酸为活化剂,按照不同的实验条件改性制备了油茶壳活性炭,利用所制备的油茶壳活性炭对水体中的氨氮进行了吸附,探讨了活化温度、活化剂浓度、吸附时间、氨氮初始浓度对吸附效果的影响,并进行了吸附热力学和动力学分析。结果表明:活化温度550℃,磷酸质量浓度50%时制备的油茶壳活性炭吸附水中氨氮的效果最佳。吸附过程在6 h左右时达到平衡,符合准二级动力学模型。吸附过程符合Langmuir等温吸附模型,对氨氮的实际最大吸附量可达到12.51 mg/g。0.1 g的磷酸改性油茶壳活性炭对初始质量浓度为4 mg/L的氨氮废水中氨氮的去除率可以达到90.5%,吸附效果良好。  相似文献   

4.
柚子皮生物炭的制备及对水体中锰离子的吸附   总被引:1,自引:0,他引:1  
以柚子皮为原料经硫化钠活化后炭化处理制备了生物质炭吸附剂,并将之应用于含锰废水的吸附。考察了溶液p H值、底液质量浓度、生物炭投加量等因素对柚子皮生物炭吸附能力的影响,并研究了柚子皮吸附剂对锰离子废水的吸附平衡和动力学特征。结果表明:柚子皮吸附剂对含锰废水具备较强吸附能力,在溶液p H值为6,底液质量浓度为50 mg/L,吸附剂投加量为2 g/L的条件下,对锰离子的去除率为93.5%;吸附平衡实验表明该等温吸附过程符合Langmuir方程,饱和吸附量为24.691 mg/g;吸附动力学研究表明,该吸附过程符合二级动力学方程,吸附速率常数为0.028 6 g/(mg·min)。  相似文献   

5.
蔬菜废弃物基生物炭对铅的吸附特性   总被引:3,自引:0,他引:3  
以蔬菜废弃物(芹菜)为原料,采用限氧裂解法制备了500℃下的蔬菜废弃物基生物炭,利用SEM扫描电镜、EDS能谱分析、CHN元素分析、FTIR红外光谱、比表面积及孔径分析等方法表征生物炭的物理化学性质,探究生物炭对水溶液中Pb(Ⅱ)的吸附特性及其影响因素。结果表明,500℃下制备的废弃芹菜生物炭孔隙较少,具有较小的比表面积和丰富的官能团。废弃芹菜生物炭对Pb(Ⅱ)具有良好的吸附效果,在初始pH值为5、投加量为0.8 g/L、初始质量浓度为400 mg/L时,其最大吸附量为240.5 mg/g,且投加量、初始质量浓度和体系pH值的影响强烈。废弃芹菜生物炭对Pb(Ⅱ)的吸附在5 min内达到平衡,吸附过程更符合准二级动力学模型(R~20.99),表明其吸附速率主要受化学作用控制。同时吸附速率还受初始质量浓度的影响,初始质量浓度越低,吸附过程越先达到平衡。在试验范围内,等温吸附Langmuir模型和Freundlich模型都适合描述废弃芹菜生物炭对Pb(Ⅱ)的吸附过程。  相似文献   

6.
用纳米级吸附材料硬硅钙石对焦化废水氨氮进行脱氮试验研究.结果表明,硬硅钙石对氨氮吸附平衡时间为180 min,吸附等温线符合Freundlich和Langmuir方程,吸附等温式为qe=0.434 5Ce0.3269和qe=0.074 5Ce/(1 0.028 3Ce),1/n=0.326 9在0.1-0.5之间,可以作为焦化废水氨氮的吸附剂使用,计算单层吸附最大吸附量为2.6357 mg/g.当投加量为2.5g/100 mL时,硬硅钙石与活性炭对焦化废水氨氮平衡吸附量分别为1.35 mg/g和10 mg/s,对氨氮的去除率分别为45.55%和47.25%,两者处理效果差异不断减少.  相似文献   

7.
碳化温度对稻壳生物炭的影响及其对Cr(Ⅵ)的吸附性能   总被引:1,自引:0,他引:1  
以稻壳为原料,在不同的温度(300,500和700℃)下采用限氧碳化法制备了生物炭,并利用扫描电镜(SEM)和红外光谱(FTIR)表征了生物炭的结构和性质,同时考察了pH值对生物炭吸附的影响,初步探讨了吸附机理。结果表明,制备的生物炭官能团种类和总量相近,均含有烷基、芳香基及一些含氧官能团,随着碳化温度的升高芳香族化合物增加,芳香化程度增强。试验条件下稻壳生物炭(RH700)对Cr(Ⅵ)的饱和吸附量达到16.68 mg/g,降低pH值有利于对Cr(Ⅵ)的吸附。稻壳生物炭等温吸附曲线更符合Langmuir模型,对吸附过程中焓(△H)、熵(△S)和吉布斯自由能(△G)的计算表明,稻壳生物炭对Cr(Ⅵ)的吸附是自发的吸热反应,其吸附行为更符合伪二级动力学模型,拟合的qe值与实测值相差小于0.38 mg/g。颗粒内扩散表明膜扩散和颗粒内扩散共同控制着吸附过程。  相似文献   

8.
天然沸石具有去除阳离子氨氮的作用,但不具有去除阴离子的作用.用阳离子表面活性剂十六烷基三甲基溴化铵(HDTMA)对天然沸石进行改性.在静态条件下,利用天然沸石及改性沸石对模拟污水中氮磷的去除效果和规律进行了研究.结果表明,天然沸石对氨氮的去除率在75%以上,对磷几乎没有去除.HDTMA改性后的沸石对氨氮的去除率有所下降,但在5%之内;对磷酸盐的去除有明显提高,最佳改性剂质量浓度为30 g/L.随污染物质量浓度增加,改性沸石的吸附量增大,最后缓慢趋于平衡;吸附平衡数据与Langmuir等温吸附模型十分吻合.正交试验结果显示,混合溶液中各目标污染物之间没有相互干扰作用.氨氮的绝对浓度是改性沸石对氨氮吸附最主要的影响因素,表面活性剂质量浓度是改性沸石吸附磷酸盐最重要的影响因素.在污染物配比、污染物浓度级别、改性剂质量浓度分别为30:5、1和30 g/L时,改性沸石对磷酸根的去除率最大,为56.6%,同时氨氮的去除率高达93.6%.  相似文献   

9.
以楠竹竹粉(BP)为原料,经氢氧化钠预处理,再由巯基乙酸化学改性制备两种新型竹粉生物吸附剂SBP和TBP,对其结构进行了红外表征。考察了溶液pH值、温度、吸附剂量和吸附时间对SBP和TBP吸附Cd(Ⅱ)性能的影响,研究了其吸附动力学和等温吸附模型。结果表明,pH值和吸附剂用量对吸附率影响显著,温度降低更有利于吸附的进行。吸附动力学可用准二级动力学方程描述,吸附过程为化学吸附所控制。SBP和TBP对Cd(Ⅱ)的吸附行为符合Langmuir和Freundlich模型,其最大吸附量分别为81.30 mg/g和163.93 mg/g。  相似文献   

10.
以稻壳-粉煤灰为混合吸附剂吸附沼液中的氮磷,考察了混合吸附剂组分质量比、吸附剂量、吸附时间、初始氨氮质量浓度和p H值对吸附效果的影响。结果表明:在沼液中PO3-4-P和NH+4-N初始质量浓度分别为36.4 mg/L和88.2 mg/L、稻壳粉和粉煤灰质量比为3∶7、混合吸附剂投加量为50 g/L、吸附时间180 min、p H=8.3时,沼液中PO3-4-P的去除率达90.5%,NH+4-N去除率达70.6%,COD去除率达29.7%,PO3-4-P、NH+4-N和COD的吸附量分别为0.6588 mg/g、1.245 mg/g和1.356 mg/g。  相似文献   

11.
采用批量试验的方法研究了西北地区黄土对克百威的吸附动力学和热力学行为,并对相关影响因素进行了分析。结果表明:黄土对克百威吸附的最优动力学方程为准二级动力学方程;克百威在黄土中的吸附较好地符合Freundlich等温吸附方程;黄土吸附克百威过程中的吉布斯自由能ΔG■、焓变ΔH■及熵变ΔS■都小于0,表明黄土对克百威的吸附为自发进行的放热过程,并且吸附过程中体系混乱度减小,黄土吸附克百威的主要作用力为氢键力;pH值为4~10时,随pH值增大克百威的吸附容量减小,且pH值为4~8时减小趋势较平缓,p H值为8~10时减小趋势很大;随供试土样粒径减小,克百威在黄土中的吸附容量增大,当土壤粒径从0.45 mm减小到0.075 mm时,吸附容量由0.009 mg/g增加到0.049 mg/g;克百威在黄土中的吸附容量受其初始质量浓度影响很大,随克百威初始质量浓度增大,黄土对其的吸附容量相应增加,克百威初始质量浓度从20 mg/L增至110mg/L时,其在黄土中的吸附容量从0.080 mg/g增加至0.206 mg/g。  相似文献   

12.
炭化小麦秸秆对水中氨氮吸附性能的研究   总被引:3,自引:1,他引:2  
用直接炭化法制备了小麦秸秆吸附剂,并通过静态吸附试验研究了炭化小麦秸秆对氨氮的吸附性能和影响因素。结果表明:直接炭化法制备小麦秸秆吸附剂的最佳炭化温度为300℃;在试验的pH值范围内,pH=9时炭化小麦秸秆对氨氮的吸附去除最好;300℃时炭化小麦秸秆吸附不同质量浓度(ρ=30 mg/L、50 mg/L、100 mg/L)氨氮的动力学曲线符合准二级动力学模型,吸附常数k2分别为0.681 8g/(mg.min)、0.747 4 g/(mg.min)、1.025 0 g/(mg.min);直接炭化小麦秸秆吸附剂对氨氮吸附去除的最佳温度是30℃;不同温度下的吸附等温线可用Freundlich吸附等温方程进行拟合;由吸附热力学方程计算得到的等量吸附焓变ΔH>0,吸附自由能变ΔG<0,吸附熵变ΔS>0,表明炭化小麦秸秆对氨氮的吸附为吸热的和熵增加的自发过程,且属于物理吸附。  相似文献   

13.
以KOH为改性剂对无烟煤改性,研究了改性前后无烟煤对3种内分泌干扰物EDCs(17α-乙炔基雌二醇EE2、双酚A BPA、磺胺甲噁唑SMZ)的吸附性能。结果表明,KOH改性对无烟煤的孔结构和表面性质产生影响,提高了无烟煤对3种EDCs的吸附量,其中对EE2的吸附量提高了近2倍。3种EDCs在改性前后2种无烟煤上的吸附过程均可用伪二级动力学描述,吸附等温线更符合Langmuir吸附等温方程,表现为化学吸附。改性前后2种无烟煤对EE2均表现出最高吸附能力,平衡吸附量(qe)分别为0.214 7μg/mg与0.622 9μg/mg;其次是BPA;最差是SMZ,qe仅为0.095 9μg/mg与0.124 2μg/mg。进一步研究表明,目标物的吸附情况与其憎水性质和分子结构有关,无烟煤吸附目标物的能力与其正辛醇/水分配系数正相关。  相似文献   

14.
应用膨润土吸附阿莫西林,探讨了4种吸附剂的吸附效果,并以改性十六烷基三甲基铵盐(DK1)为试验材料,研究了吸附时间、溶液pH值、投加量、初始质量浓度和温度等因素对有机膨润土吸附溶液中阿莫西林效果的影响。结果表明,在自然pH值条件下,DK1的吸附剂效果最佳,且吸附在15min内快速达到平衡。吸附过程符合伪二级动力学方程,同时符合Freundlich、Langmuir和Temkin型等温吸附方程,是个吸热的过程,Langmuir理论最大吸附容量在30℃时可达27.86mg/g。对等温方程的研究表明,DK1对阿莫西林的吸附呈单分子层形式,吸附性能良好,易于进行。  相似文献   

15.
采用改性松木锯末作为吸附剂,对富营养化水体的模拟水样中的磷进行吸附去除研究。实验结果表明,改性松木锯末对磷的吸附作用主要发生在15 min内,吸附时间超过15 min吸附量趋于平衡状态;p H值由4.0上升到6.0,改性松木锯末对磷的去除率增长较快,由6.0上升到9.0,去除率基本处于稳定状态;磷浓度在0.5~5 mg/L的低浓度范围内,改性松木锯末对磷的去除率均可达到95%以上;改性松木锯末的最佳投加量为0.4 g/L。用Freundlich吸附等温线方程能准确地描述改性松木锯末对磷吸附的特征,吸附等温线方程为q=5.11 C~(1/0.523)。  相似文献   

16.
以氯化锌为活化剂,通过微波诱导热解法制备小麦秸秆吸附剂,并以微波功率、热解时间和氯化锌质量分数为影响因素,碘吸附值为响应值,采用响应面法对小麦秸秆吸附剂的制备工艺进行优化。结果表明,热解时间和微波功率对碘吸附值的交互作用明显。响应面优化工艺分析,发现当热解时间4.03 min、微波功率569.0 W,氯化锌质量分数为31.24%时,碘吸附值最大,为643.33 mg/g。另外,小麦秸秆吸附等温线与I型相似,吸附剂的微孔容积为0.238 4cm3/g,吸附剂的BJH孔径分布表现窄小,最高峰出现在2.1nm左右。处理Cr(VI)废水的吸附试验,发现Cr(VI)的去除率可以达到70%以上。研究表明,微波诱导热解法及响应面优化工艺制备的小麦秸秆吸附剂技术可行且具有良好的重金属废水处理应用前景。  相似文献   

17.
用化学共沉淀法制备磁性碳纳米管,然后以聚合氯化铝(PAC)通过微波法修饰得到磁性聚合氯化铝碳纳米管复合材料,并用以去除水中的腐殖酸(HA),对复合材料的组成与结构进行了表征,考察了不同微波制备条件下复合材料去除HA的效果,研究了吸附工艺中HA去除的影响因素,对复合材料同步去除HA和浊度的可行性进行了探讨。能谱、X-射线衍射及红外光谱分析表明,PAC和磁性物质Fe3O4、γ-Fe2O3成功负载于碳纳米管上。PAC修饰显著提高了磁性碳纳米管对HA的去除率。在微波功率600 W及微波时间6 min条件下得到的复合材料去除HA的效果最佳,去除率达99.15%。当HA初始质量浓度小于25 mg/L时,HA去除率较高,但高于25 mg/L后吸附量变化不大而去除率下降;HA去除率随材料投加量增大而增大,但大于0.5 g/L后基本不变;在酸性与中性条件下HA去除率较高,在碱性条件下急剧下降;对于初始质量浓度为20 mg/L的HA溶液,吸附前5 min的HA去除速率很快,90 min时达到吸附平衡,平衡吸附量为39.48 mg/g;温度对去除HA没有影响。控制适当的条件,可同步去除HA和浊度,去除率同步达95%以上。  相似文献   

18.
花生壳粉对分散黄染料吸附性能的研究   总被引:1,自引:1,他引:0  
采用花生壳粉作吸附剂对分散黄染料进行吸附试验研究.研究了花生壳粉用量、pH值、吸附时间等因素对分散黄染料吸附的影响,确定了最佳吸附条件.结果表明,分散黄染料溶液质量浓度100 mg·L~(-1),花生壳粉用量10 g·L~(-1),pH值2,吸附时间36 h时,脱色率可达97.85%以上.通过测定常温下花生壳粉对分散黄染料的吸附等温线,并进行回归分析,得出花生壳粉对分散黄染料的吸附等温线符合Langmuir方程,其饱和吸附量达54.64 mg·g~(-1),说明花生壳粉可在一定质量浓度范围内吸附分散黄染料.  相似文献   

19.
Functionalized Granular Activated Carbons (FACs) are used as adsorbents for treating pharmaceutical wastewaters containing Chlorhexidine Gluconate. Chemical modifications of Granular Activated Carbons (GACs) using functionalizing agents like HCl and HF produce FACs. The adsorption capacity of each of FAC-HCl and FAC-HF is found to be higher than GAC. The modelled maximum adsorption capacity for FAC-HCl is 1.02 g/g of adsorbent, 3.49 g/g of adsorbent for FAC-HF and 0.0682 g/g of adsorbent for GAC. This is mainly due to the additional chemisorptions by surface complexation at the functionalized surface sites of the modified GACs. This is also supported by the well-known pseudo-second-order kinetic model. Formation of surface complexes with the functional groups and weakly polar Chlorhexidine Gluconate is well supported by the physical characterization using Energy dispersive X-ray spectroscopy (EDAX), Brunner–Emmett–Teller (BET) test and Fourier Transform Infrared spectroscopy (FTIR) analysis after adsorption. The adsorption capacity of GAC and the FACs increases in the order of FAC-HF > FAC-HCl > GAC conforming to the proportion of the total acidity of the carbon surfaces. Intra-particle diffusion is not the sole rate-controlling factor. An agreement to pseudo-second-order kinetic model, Elovich kinetic model and Boyd's film diffusion model proves that chemisorption is the rate-controlling parameter in this adsorption study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号