首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高倍泡沫抑制LNG蒸气扩散研究中鲜见温度细化分析,提出通过泄漏池底-140℃以下温度维持时间衡量控害效果。分析发现温度变化可反映蒸发快慢;施加稳定性高、发泡倍数小的泡沫及增大泄漏量和泡沫覆盖高度利于降低平均蒸发率;水合物层、冰层降低蒸发率效果强于泡沫。LNG泄漏高度点之上,泄漏量大时会出现明显的"V"形波动,波动幅度从上到下逐渐增大而后再逐渐减小,波动次数随泡沫高度减小而增多。  相似文献   

2.
为深入揭示高倍泡沫抑制液化天然气(LNG)蒸气外逸机制,通过HYSYS计算和试验,首次证明泡沫施加在LNG液池上有天然气水合物(NGH)生成,田口分析量化得到不同阶段泡沫性能、LNG液池泄漏量、泡沫覆盖高度对LNG蒸气外逸率平均值与标准差的影响过程。结果表明:加泡初期,泡沫性能对蒸气外逸率平均值与标准差影响大,可使标准差大于0. 2 kg/min,稳定性高的泡沫降低平均值与标准差,发泡倍数大的泡沫降低平均值增大标准差,发泡倍数对标准差的影响强于稳定性;蒸气外逸率均值不随泄漏量单调变化;停加泡沫后,泡沫覆盖高度的影响逐渐增强,初期蒸气外逸率平均值随稳定性增大、发泡倍数减小而增加;标准差随泄漏量、泡沫高度单调变化。  相似文献   

3.
为了研究隧道内甲醇液体蒸发及蒸气扩散规律,应用CFD方法进行了研究,分析了隧道内甲醇蒸气浓度分布规律。结果表明:浅液池上方、车辆底部及两侧位置出现甲醇蒸气的积聚,蒸气浓度分层具有一定的规律性,纵截面浓度分层较明显;甲醇蒸气主要分布于隧道中下部位置,尤其在距离地面1 m以下的空间,在泄漏源上方、车辆底部、车辆两侧均可能出现蒸气接近或超过爆炸极限的区域;隧道内障碍车辆底部和两侧较低位置蒸气产生积聚,同时车辆也阻碍了蒸气向对侧隧道口的扩散。  相似文献   

4.
LPG船液货泄漏事故风险评估系统研究   总被引:2,自引:0,他引:2  
通过对液化石油气(LPG)船舶液货舱泄漏事故危险度因素分析,建立液化气液体货物泄漏源强、蒸气释放源强和蒸气扩散计算模型,并制定泄漏事故风险评价流程,基于VB语言编写泄漏事故风险评估系统。利用该系统能够计算得出泄漏事故发生后蒸发气在不同时刻不同区域的蒸发气浓度、爆炸或火灾后对生命财产的伤害半径以及伤害程度等相关参数。对某航行状态下的LPG实船进行模拟分析,结果表明能够对LPG船舶泄漏事故进行有效风险评估,并能对船舶航行安全应急预案的制定和事故后海事鉴定提供一定的技术帮助。  相似文献   

5.
为研究环境风速对液化天然气(LNG)泄漏扩散过程的影响,采用Fluent建立LNG连续泄漏计算流体力学模型,开展不同风速下LNG泄漏扩散过程的数值模拟研究。结果表明,LNG泄漏扩散分为扩散初期、扩散中期、扩散后期3个阶段,扩散过程中LNG从低温重气逐渐转变成轻质气体。环境风速对气云的扩散主要体现在:低于5级风时,云团以两侧卷吸为主,气云表现为"叶状分叉"、中间低两端高,此时气云横风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而增大;而高于5级风时,云团以顶部卷吸为主,气云表现为云团坍塌、中间高两端低,此时气云垂直风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而减小。初步建立了LNG蒸气云爆炸风险范围与冻伤区域和泄漏时间、环境风速的函数关系,可为爆炸风险区域和低温冻伤区域的预测提供理论支撑。  相似文献   

6.
阐述了LNG槽车的危险特性,分析了LNG槽车发生泄漏后的事故危害过程,得出LNG槽车泄漏危害事故的模式主要有闪火、喷射火、蒸气云爆炸以及沸腾液体扩展蒸汽爆炸;针对不同泄漏口面积和泄漏速度,利用风险评价软件模拟LNG槽车发生泄漏产生喷射火、蒸气云爆炸及沸腾液体扩展蒸汽爆炸3种事故模式的后果,得出各种事故模式的危害半径。模拟结果可为LNG槽车事故预防和应急救援提供参考。  相似文献   

7.
针对TNT当量法在LNG储罐蒸气云爆炸模拟中的应用进行了改进,考虑并分析了使用传统TNT模型时所忽略的LNG液池蒸发过程,通过建立LNG与地面的传热模型得出了LNG液池蒸发速率随时间变化的关系,液池的蒸发速率在最初随时间的增长较快,在增至最大值后与时间的平方根成反比逐渐减小。以3万m~3 LNG储罐连续泄漏20 min为例,根据蒸发速率与时间的关系算出了蒸气云团中的燃料量,再结合蒸气云爆炸模型利用Matlab软件进行了事故后果模拟计算,得出发生蒸气云爆炸时的死亡半径为36.629 5 m,重伤半径为83.557 6 m,轻伤半径124.725 m,财产损失半径为109.017 9 m。相较于无蒸发过程的传统模型,此计算结果更加具有参考意义。  相似文献   

8.
为了研究LPG储罐泄漏危害范围的变化规律,本文在分析LPG储罐结构类型的基础上,针对LPG泄漏事故后果类型,结合危害范围的模拟方法,借助ALOHA软件,对常温压力储存和低温常压储存条件下LPG储罐泄漏事故及泄漏可能导致的火灾爆炸事故的危害范围进行模拟。结果表明:LPG储罐发生泄漏或泄漏导致火灾爆炸事故,常温压力储存条件下的危害范围大于低温常压储存条件下的危害范围;在同种储存条件下,蒸气云爆炸、沸腾液体扩展蒸气爆炸、泄漏扩散、喷射火所造成的危害范围依次变小。研究结果为现场指挥员制定决策提供量化依据,为国家综合性消防救援队现场处置提供数据支持,同时也为应急管理部制定预案提供参考。  相似文献   

9.
LNG储罐泄漏危险性影响因素分析   总被引:2,自引:0,他引:2  
LNG(液化天然气)泄漏后产生大量的蒸汽,蒸汽的扩散受液池尺寸、泄漏区域地面类型、环境条件的影响,为了研究以上因素对LNG蒸汽扩散的影响,以方便采取事故预防措施,采用ALOHA软件对以上因素影响甲烷UFL(爆炸上限)、LFL(爆炸下限)、1/2LFL在下风向扩散的最远距离进行了定量分析,划分了可能发生火灾或者爆炸的危险区域,得出LNG泄漏到水面、混凝土地面、湿沙层、干沙层上危险性依次降低。选取水面温度分别为5℃、10℃、15℃、25℃,围堰尺寸分别为400 m2、600 m2、800 m2、1 000 m2,环境温度分别为-10℃、0℃、10℃、20℃、30℃、40℃时,对下风向甲烷体积分数分布进行定量分析,结果表明,甲烷UFL、LFL、12LFL扩散最远距离随水面温度、围堰尺寸、环境温度增加而逐渐增大。  相似文献   

10.
分析了目前用于定量预测LNG储罐泄漏火灾爆炸事故后果的三种主要计算模型,并基于ALO-HA软件对LNG储罐泄漏导致的火灾爆炸事故后果进行了定量评估,深入分析了风速、泄漏部位对LNG储罐泄漏事故的影响.结果表明:①在蒸汽云爆炸模型条件下,可燃区域和爆炸冲击波伤害区域随风速的增大先增大后减小,风速为7 m/s时达到最大值;随泄漏点与储罐底部距离的增大而减小;②在池火模型条件下,热辐射伤害区域随风速的增大先增大后减小,风速为10 m/s时达到最大值;随泄漏点与储罐底部距离的增大而减小;风速使该区域向下风向方向偏移,且偏移程度随风速增加而增加;③在沸腾液体扩展蒸气云爆炸模型条件下,风速和泄漏源位置变化对热辐射伤害区域形状和面积定量计算结果没有影响.  相似文献   

11.
Natural gas is a kind of clean, efficient green energy source, which is used widely. Liquefied natural gas (LNG) is produced by cooling natural gas to −161 °C, at which it becomes the liquid. Once LNG was released, fire or explosion would happen when ignition source existed nearby. The high expansion foam (Hi-Ex foam) is believed to quickly blanket on the top of LNG spillage pool and warm the LNG vapor to lower the vapor cloud density at the ground level and raising vapor buoyancy. To identify the physical structure after it contacted with LN2 and to develop heat transfer model, the small-scale field test with liquid nitrogen (LN2) was designed. In experiment, three layers including frozen ice layer, frozen Hi-Ex layer and soft layer of Hi-Ex foam were observed at the steady state. By characterizing physical structure of the foam, formulas for calculating the surface of single foam bubble and counting foam film thickness were deduced. The micro heat transfer and evaporation model between cryogenic liquid and Hi-Ex foam was established. Indicating the physical structure of the frozen ice layer, there were a certain number of icicles below it. The heat transfer and evaporation mathematical model between the frozen ice layer and LNG was derived. Combining models above with the heat transfer between LNG, ground and cofferdam, the heat transfer and evaporation mathematical model of LNG covered by Hi-Ex foam was developed eventually. Finally, LN2 evaporation rate calculated by this model was compared with the measured evaporation rate. The calculated results are 1.2–2.1 times of experimental results, which were acceptable in engineering and proved the model was reliable.  相似文献   

12.
The release of a cryogenic, flammable liquid, such as LNG, poses a threat to individuals in the area of the release as well as responders who attempt to limit the damage of the release. The most common mitigation technique is high-expansion foam which can be used to blanket the liquid, reducing the accumulation of flammable vapor above the pool through a number of different mechanisms. Despite the effectiveness of high-expansion foam blanketing, there are many aspects of the interaction between foam and LNG that are unknown. A lab-scale high-expansion foam generator has been developed to allow the study of those interactions. Additionally, the novel foam generator design addresses many of the drawbacks of industrial-scale foam generators and allows researchers better control of the foam, while producing foam at rates that are conducive to lab applications. Foam was produced using the generator and expansion ratio and foam stability were measured to determine the quality. The generator was able to produce foam with expansion ratio between 298 and 892 that collapsed at an average rate of 0.4 cm per minute. This quality of the foam is comparable to industrial-scale foam generators and the foam production rate is between 1.2 and 2.2 m3/min, which fits lab-scale needs. The foam generator can also be used with other types of non-firefighting foam, such as decontamination foam for chemical, biological, or nuclear decontamination.  相似文献   

13.
为研究LNG加气站槽车直接供液过程泄漏后果严重程度,采用HAZOP辨识槽车供液和储罐供液典型泄漏场景,基于PHAST分析不同泄漏场景下LNG液池半径、蒸汽云扩散距离及积聚时长、爆炸超压和池火热辐射影响范围,定量评价槽车供液可能造成的事故后果扩大程度。结果表明:槽车供液泄漏事故的LNG液池最大半径、蒸汽云最大扩散距离、爆炸超压最大影响半径和池火热辐射最大半径,分别为储罐供液的5.7,1.7,2.3,7.9倍;槽车在无人值守条件下泄漏形成的LNG液池最大半径和蒸汽云积聚时长,分别为有人值守下的1.85,56倍;日供液量较大加气站不宜采用槽车直接为汽车供液模式,而应采用先卸车入罐、再储罐供液的模式;应落实槽车卸车轮班值守制度,并与周边社区建立有效的应急联动方案。  相似文献   

14.
Liquefied natural gas (LNG) is widely used to cost-effectively store and transport natural gas. However, a spill of LNG can create a vapor cloud, which can potentially cause fire and explosion. High expansion (HEX) foam is recommended by the NFPA 11 to mitigate the vapor hazard and control LNG pool fire. In this study, the parameters that affect HEX foam performance were examined using lab-scale testing of foam temperature profile and computational fluid dynamics (CFD) modeling of heat transfer in vapor channels. A heat transfer model using ANSYS Fluent® was developed to estimate the minimum HEX foam height that allows the vapors from LNG spillage to disperse rapidly. We also performed a sensitivity analysis on the effect of the vaporization rate, the diameter of the vapor channel, and the heat transfer coefficient on the required minimum height of the HEX foam. It can be observed that at least 1.2 m of HEX foam in height are needed to achieve risk mitigation in a typical situation. The simulation results can be used not only for understanding the heat transfer mechanisms when applying HEX foam but also for suggesting to the LNG facility operator how much HEX foam they need for effective risk mitigation under different conditions.  相似文献   

15.
The objective of this work is to investigate and model the mutual effects between the dynamic pressure/temperature in the LNG tank and the leakage behavior with external heat fluxes. The results suggest that the pressure and temperature in tank during leakage change with the comparison results between the heat flux consumed in liquid boil-off and the external heat flux supplied. At the liquid leakage stage, when the external heat flux is not very high, the pressure in tank tends to increase significantly, even results in tank explosion. It increases more and more heavily with higher and higher external heat fluxes. At the vapor leakage stage, large amount of vapor spray out, which results in a high generation rate of vapor by the liquid boil-off. The pressure in tank normally decreases to be low, which is unfavorable for the LNG tank explosion. Therefore, at this vapor leakage stage, blocking the leakage hole as soon as possible is not always a right choice for fire fighters. Finally, it is suggested that reducing the heat flux into the tank, either at the liquid leakage stage or in vapor one, is key to the tank safety.  相似文献   

16.
The frequent occurrence of LNG leakage accidents has caused serious economic loss and environmental damage. Experiments and simulations can be combined to obtain the transient process of LNG leakage and diffusion. This paper analyzed LNG leakage diffusion rules with experiment results obtained by depleting 1.4t LNG. The vapor clouds and LNG concentration are measured, which can be a comparison with the simulation results. Computational fluid dynamics and gas diffusion theory were chosen as the theoretical basis, simulating the transient process of LNG gasification to obtain the diffusion concentration rules. The simulation of LNG diffusion is divided into two parts: LNG leakage at the source and atmospheric diffusion. The maximum concentration of methane in the experiment was 4.1%, and the maximum concentration in the simulation was 4.6%. The results show good agreement of the deviation statistics, which fall in the standard recommendation value range. Then we make a prediction of the dangerous concentration area and the flammability hazard zone of LNG leakage accident. The simulation results show that the range of the lower wind direction danger area firstly increases and then decreases, and the maximum distance of IDLH increases firstly and arrived at the peak of 52  m at 300s.  相似文献   

17.
One of the LNG accident scenarios is the collision of an LNG carrier on an iceberg during marine transportation. A collision can result in damages to the vessel and lead to the leakage of the contents on ice or an ice-water mixture. When cryogenic liquid comes in contact with ice, it undergoes rapid vaporization due to the difference in temperature between the ice and cryogenic liquid. This process is different from the heat transfer between water and cryogenic liquid as ice is a solid and thus heat transfer to the pool occurs primarily through conduction. In this paper, the heat transfer phenomenon between ice and cryogenic liquid was studied through a small-scale experiment and the resulting vaporization mass fluxes were reported. The experiment involved six spills with varying amount of liquid nitrogen on different ice temperature to determine its effect on vaporization mass flux. The vaporization mass fluxes were determined by direct measurement of the mass loss during the experiment. The results indicated that the vaporization mass flux was a function of release rate and ice temperature. When the release rate and ice temperature was high, the vaporization mass flux follows a decreasing trend. With further reduction in release rate and ice temperature, the vaporization mass flux was found to be independent with time. The one dimensional conduction model was validated against experimental results. The predicted temperatures and heat flux were found to be in good agreement with the experimental data.  相似文献   

18.
An LNG pool fire is considered one of the main hazards of LNG, together with LNG vapor dispersion. Suppression methods are designed to reduce the hazard exclusion zones, distance to reach radiant heat of 5 kW/m2, when an LNG pool fire is considered. For LNG vapor dispersion, the hazard exclusion zone is the distance travelled by the LNG vapor to reach a concentration of 2.5% v/v (half of the LNG lower flammability limit).Warming the LNG vapor to reach positive buoyancy faster is one way to suppress LNG vapor dispersion and reduce evaporation rate (thus fire size and its associated radiant heat) and that is the main objective in LNG pool fire suppression. Based on previous research, the use of high expansion foam has been regarded as the primary method in suppressing LNG pool fires. However, in 1980, another method was introduced as an alternative pool fire suppression system, Foamglas®. The research concluded that 90% of the radiant heat was successfully reduced. Currently-called Foamglas® pool fire suppression (Foamglas® PFS) is a passive mitigation system and is deployed after the leak occurs. Foamglas® PFS is non-flammable, and has a density one-third of the density of LNG, thus floats when an LNG pool is formed.This paper describes the study and confirmation of Foamglas®PFS effectiveness in suppressing LNG pool fires. In addition, while Foamglas® PFS is not expected to suppress LNG vapor dispersion, further investigation was conducted to study the effect of Foamglas®PFS on LNG vapor dispersion. An LNG field experiment was conducted at Brayton Fire Field. The experimental development, procedures, results and findings are detailed in this paper.  相似文献   

19.
The effect of turbulence on the rate of evaporation of LNG on water   总被引:1,自引:0,他引:1  
The present study provides new measurements of the rate of evaporation of cryogenic liquids, liquefied natural gas (LNG) and liquid nitrogen (LN2), floating on a water surface with different levels of turbulence intensity. The turbulent water surface is generated with an upward-pointing submerged jet with controlled jet velocity, an approach which has often been used in studies of free-surface turbulence. Direct measurements of the rate of evaporation were carried out for different pool thicknesses and turbulence intensities of the water surface. These tests reveal a strong dependence of the evaporation rate on the turbulence intensity, as well as a dependence on the thickness of the cryogenic liquid layer above the water surface. Models of LNG spills on water currently use a single rate of evaporation; these findings show that this approach is inadequate. Future models should incorporate the water turbulence intensity, and possibly the LNG spill thickness for improved accuracy.  相似文献   

20.
The evaluation of exclusion (hazard) zones around the LNG stations is essential for risk assessment in LNG industry. In this study, computational fluid dynamics (CFD) simulations have been conducted for the two potential hazards, LNG flammable vapor dispersion and LNG pool fire radiation, respectively, to evaluate the exclusion zones. The spatial and temporal distribution of hazard in complex spill scenario has been taken into account in the CFD model. Experimental data from Falcon and Montoir field tests have been used to validate the simulation results. With the valid CFD model, the mitigation of the vapor dispersion with spray water curtains and the pool fire with high expansion foam were investigated. The spray water curtains were studied as a shield to prevent LNG vapor dispersing, and two types of water spray curtain, flat and cone, were analyzed to show their performance for reduction and minimization of the hazard influencing distance and area. The high expansion foam firefighting process was studied with dynamic simulation of the foam action, and the characteristics of the foam action on the reduction of LNG vaporization rate, vapor cloud and flame size as well as the thermal radiation hazard were analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号