首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
根据多年从事压力容器检验工作的经验,用统计数据及3个压力容器的检验实例,说明大型关键压力容器的首次全面检验对压力容器安全及使用寿命具有重要影响.  相似文献   

2.
海上平台压力容器检验周期的计算方法通常会产生过少或过度检验的问题,确定合理的检验周期对平衡压力容器的安全操作和检验成本具有重大意义。采用改进的RBI技术,对2种泄漏类型的压力容器系统分别设定不同的可接受风险,并将渐变模型引入压力容器检验周期计算方法中,计算了某海上生产平台上的51台压力容器的检验周期。结果表明,共有22个压力容器部位的检验周期得到调整,验证了改进的方法可以使检验周期数值更真实合理地反映设备风险,但对腐蚀率较小的损伤机理,采用渐变模型改进容器部位的检验周期效果不明显。  相似文献   

3.
针对从国外拆迁进口的成套化工装置中旧压力容器存在的问题,以顺酐装置旧压力容器安全性能监督检验的实例为核心,探讨了此类压力容器在重新安装之前进行安全性能监督检验的处理对策以及对检验出的缺陷处理方法,对进口旧压力容器的安全性能监督检验有一定的借鉴作用。  相似文献   

4.
对于压力容器的安装是否要进行监督检验,一直存在争论。除氧舱外,目前尚未制订压力容器安装监检规则,无法开展监督检验工作。文中介绍了压力容器安装监检的历史和现状,讨论了实施压力容器安装监检的依据,通过介绍7个由于安装原因导致压力容器存在安全隐患的典型案例,阐述实施压力容器安装监检的必要性,并对检验的适用范围、检验的重点项目和内容提出了建议。  相似文献   

5.
《江苏劳动保护》2011,(1):41-42
盐化工生产过程中使用了大量的的压力容器,由于盐化工生产过程中介质的腐蚀性很强,因此,检验前的准备工作、关键部位的检验与一般压力容器相比有所区别。本文列举了几种盐化工生产过程关键压力容器的检验要点,以及重点检验部位。  相似文献   

6.
阐述了电站压力容器水位计的工作原理,提出了压力容器全面检验和时水位计检验重点。  相似文献   

7.
肖爽 《劳动保护》1998,(1):34-34
压力容器管道试压安全技术吉化公司化肥厂肖爽,刘同文为保证在用压力容器及压力管道的安全运行,必须进行定期检验。水压试验作为一种综合性检验方法,不仅可以检验容器及管道的强度,还可以检验压力容器的致密件。按照劳动部《压力容器安全技术监察规程》的规定,压力容...  相似文献   

8.
1981年10月国家劳动总局锅炉压力容器安全监察局在湖南岳阳召开了全国锅炉压力容器检验所工作座谈会。讨论研究了如何进一步搞好锅炉压力容器检验所工作的问题。 会议指出,锅炉压力容器是工业生产的重要设备,如果有了隐患不及时排除,就会发生事故,甚至有爆炸危险,造成人身伤亡和经济损失。为了搞好锅炉压力容器检验工作,近几年来,许多地区劳动部门很重视建立锅炉压力容器检验所工作,全国现已有检验所100多所,形成初具规模的专业检验力量,并已检验了大量的锅炉和压力容器,消除了事故隐患,避免了一些恶性事故,对保证锅炉压力容器安全运行起了…  相似文献   

9.
隋晶 《劳动保护》1993,(12):35-38
自 1982年《锅炉压力容器安全监察暂行条例》贯彻实施以来,我国压力容器安全状况迅速好转,事故数量逐年下降,但是,由于多方面因素的影响,目前压力容器安全状况还处于不稳定状态,事故数量时高时低,本文拟对近10年来压力容器安全状况及失败原因进行分析探讨。 一、近10年来的安全状况 我国现有压力容器百余万台,各类气瓶3650万余只。已经检验台数为94万台(不含气瓶),在用压力容器检验后的状况是:经检验符合或基本符合要求为80.9万台,占在用压力容器总数的86%;存在缺陷而监控使用为13万台,占在用压力容器总数的11%;经检验报废的为2.8万台,占在…  相似文献   

10.
一、概述 由于锅炉是直接受火的承压设备,而压力容器是非直接受火的承压设备,故两者在制造、检验过程中适用的标准不同,因此锅炉与压力容器筒体、封头在尺寸形状公差的规定不尽相同,对于即有制造锅炉,又有制造压力容器的生产单位更容易用错标准,为了防止锅炉、压力容器在制造、检验及验收过程中发生差错,现将锅炉与压力容器筒体、封头在制造、检验过程中容易混淆的部分标准进行一一对比.  相似文献   

11.
应用概率断裂力学的观点,讨论了压力容器各有关参数的分布特点及允许的失效概率,分析了材料韧性为两种不同分布时压力容器可靠性计算方法,说明了进行压力容器失效概率分析是全面评价压力容器的方法之一.  相似文献   

12.
为准确反映含点腐蚀缺陷复合板压力容器的安全状态,在复合结构弹性力学分析的基础上,通过工程实例,采用运行适应性(FFS)评价方法对其进行安全评定与剩余寿命评估。结果表明:复合板压力容器安全评定时应考虑覆材的影响,依据提出的力学模型分别对覆材厚度计入和不计入强度设计2种情况进行应力校核,同时结合蚀孔的分布特征,对其特征尺寸进行统计学平均后计算剩余强度。在剩余寿命预测中,已考虑蚀孔直径和深度随时间变化对剩余强度的影响。通过计算最大工作压力(MAWP)参量,已对某一压力容器进行寿命评估。  相似文献   

13.
承压设备的风险评估技术及其在我国的应用和发展趋势   总被引:12,自引:1,他引:12  
本文简介了压力容器、压力管道等承压设备的风险评估技术的基本原理,包括成套装置的RBI技术和埋地管道的风险评估技术.以化工厂EVA装置和高压燃气管道风险评估的实例为核心,阐述了承压设备风险评估技术在我国的应用情况.归纳了我国承压设备风险评估技术发展趋势.  相似文献   

14.
文章以国内典型压力容器用材245R为例,采用GB/T19624~断裂力学评价方法对于《压力容器定期检验规程》表5、表6中的超标非圆形缺陷可接受准则的安全裕度进行评价,评价结果表明其中可接受准则的部分规定不够保守,就此作者给出相关的修改建议。  相似文献   

15.
Following the indications of earlier work, the use of a closed pressure vessel test (a mini-autoclave system) to estimate the explosive properties of organic compounds has been investigated. The dependent variable was an explosivity ranking derived from the results of a propagation of detonation test, a heating under confinement test and a deflagration test. Tentative criteria have been derived to allow the following conclusions:• Not detonable• Not Class 1• No explosive properties with respect to transport classificationThe criteria are based upon the maximum rate of pressure rise observed in the mini-autoclave and the temperature at which this occurs. They offer a more efficient screen than the decomposition energy criteria which are currently used for initial assessment of explosive properties. The importance of event temperature suggests that existing classification tests may be underestimating heating under confinement and deflagration hazards. In this case, maximum rates of pressure rise from a closed pressure vessel test might be a better basis of classification, at least for supply if not transport. Further work is necessary to test the proposed screening criteria and to assess the use of a closed pressure vessel test as a means of classification.  相似文献   

16.
基于断裂力学的受压容器安全评定方法   总被引:2,自引:0,他引:2  
以断裂力学为基础,对在役含缺陷受压容器的评定方法与评定步骤进行了介绍,规范了缺陷简化及等效裂纹尺寸,并进行缺陷的脆断评定。它能对在役压力容器的现在和未来状况进行评估和预测,判断其是否能够继续使用及安全度如何,并能在安全的前提下使压力容器的潜能得到充分发挥,从而在最大程度上减少危害与损失。  相似文献   

17.
压力容器气体非稳态泄漏模型研究   总被引:2,自引:0,他引:2  
为计算气体在非稳态泄漏过程中的泄漏率,提高危害后果评估的量化水平,对压力容器失效后气体泄漏过程进行了研究。基于现有的初始泄漏率模型,结合实际泄漏过程中压力容器内各项状态参数的动态变化规律,构建气体非稳态泄漏模型,并通过计算实例进行分析和验证。结果表明,该模型可计算压力容器气体非稳态泄漏过程中(包括音速泄漏阶段和亚音速泄漏阶段)任意时刻容器内的各项状态参数值和孔口处气体的平均泄漏率;同时,对于储存压力较高(大于3.0 MPa)的容器,提出近似计算总平均泄漏率的2种简化方法。  相似文献   

18.
The method of explosion venting is widely used in industrial explosion-proof design due to its simple operation, economical and practical features. A dump vessel vented platform was built. By changing the vacuum level and the gas in the dump vessels and the structural size of linked vessels, the pressure in the explosion vessel and the dump vessel was compared, and the influencing factors of explosion venting investigated. The main conclusions are as follows: In the explosion venting process, the higher the vacuum in the dump vessel, the smaller the pressure peak of the explosion vessel and the dump vessel, and the faster the explosion pressure is lowered. When the dump vessel is under the same vacuum level and the gas in the dump vessel is CO2, the maximum pressure of the explosion vessel and the dump vessel is less than the maximum pressure when the containment medium is air. Under the same vacuum condition, the larger the volume ratio of the dump vessel and the explosion vessel, the smaller the pressure peak of the explosion vessel, the faster the explosion pressure drops, and the volume of the dump vessel reaches or exceeds the explosion vessel. Increasing the volume ratio of the containment vessel to the explosion vessel facilitates protection of the explosion vessel and the containment vessel. Under the same vacuum condition, when the gas explosion in 113 L vessel vents into 22 L vessel, the longer the length of the pipe, the greater the maximum pressure in the spherical vessel. When the gas explosion in 22 L vessel vents into 113 L dump vessel, as the pipeline grows, the maximum pressure in the two vessels decreases, but the reduction is not significant. In practical application, it is recommended to use a vacuum of 0.08Mpa or more for the dump vessel vented, and the containment medium is CO2.In terms of the structural size of the container, it is recommended that the ratio of the receiving container to the explosion container be as large as possible, and the pipe length be as long.  相似文献   

19.
传统的设备管理模式造成设备非计划停机次数较多、故障频繁、可靠性和可用性不高等问题。为了解决上述问题,开发了成套装置动态风险管理专家系统,该系统包括动态风险监控、数据存储、失效模式及损伤机理判别、动态风险评估、风险辅助分析5个流程。该系统通过GIS平台进行展示,使用户可以直观、方便地查找、定位管线和容器位置,实现了高风险设备的风险展示、管道剩余寿命不足报警功能和管道冲蚀图例展示。将该专家系统进行了工程应用,得到容器和管道的潜在损伤机及其风险等级,针对不同风险等级的设备,生成了不同的检维修策略,为工程应用带来了很大的方便。  相似文献   

20.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号